# Department of Mathematics Third Annual High School Problem Solving Contest November 1, 2018 <br> <br> Solutions 

 <br> <br> Solutions}

## 1.

## 10 points

Two students attempted to solve a quadratic equation, $x^{2}+b x+c=0$. Although both students did the work correctly, the first miscopied the middle term and obtained the solution set $\{-3,4\}$. The second student miscopied the constant term and obtained the solution set $\{-1,5\}$. What are the correct solutions?

Solution 1: Since $(x+3)(x-4)=x^{2}-x-12$ and $(x+1)(x-5)=x^{2}-4 x-5$, the first student was solving the equation $x^{2}-x-12=0$ and the second student was solving the equation $x^{2}-4 x-5=0$. The correct equation is $x^{2}-4 x-12=0$, so the correct solutions are $x=-2$ and $x=6$.

Solution 2: Recall Vieta's formulas: if $x=r_{1}$ and $x=r_{2}$ are two roots of $x^{2}+b x+c=$ 0 , then $b=-\left(r_{1}+r_{2}\right)$ and $c=r_{1} r_{2}$. Since the first student got $r_{1}=-3$ and $r_{2}=4$, we have $c=-12$. The second student got $r_{1}=-1$ and $r_{2}=5$, so $b=-(-1+5)=-4$. Therefore the correct equation is $x^{2}-4 x-12=0$, so the correct solutions are $x=-2$ and $x=6$.
2. 10 points

An unbiased coin is tossed. If the result is a head, then a pair of regular unbiased dice is rolled and the number obtained by adding the numbers on the top faces is noted down. If the result is a tail, then a card from a well-shuffled pack of eleven cards numbered $2,3,4, \ldots, 11,12$ is picked and the number on the card is noted down. What is the probability that the noted number is 7 or 8 ?

Solution: Let $E_{1}=$ coin toss is a head, $E_{2}=$ coin toss is a tail, $A=$ number noted is a 7 or 8 . We know that $P\left(E_{1}\right)=P\left(E_{2}\right)=\frac{1}{2}$. Also, $P\left(A \mid E_{1}\right)=P(7)+P(8)=\frac{6}{36}+\frac{5}{36}=\frac{11}{36}$, and $P\left(A \mid E_{2}\right)=\frac{2}{11}$.
So, $P(A)=P\left(A \mid E_{1}\right) P\left(E_{1}\right)+P\left(A \mid E_{2}\right) P\left(E_{2}\right)=\frac{11}{36} \cdot \frac{1}{2}+\frac{2}{11} \cdot \frac{1}{2}=\frac{193}{792}$.
3. 10 points

Prove that for any integer number $m$, the value of

$$
\frac{m}{3}+\frac{m^{2}}{2}+\frac{m^{3}}{6}
$$

is also an integer.
Solution: Observe that

$$
\begin{aligned}
\frac{m}{3}+\frac{m^{2}}{2}+\frac{m^{3}}{6} & =\frac{2 m+3 m^{2}+m^{3}}{6} \\
& =\frac{m\left(2+3 m+m^{2}\right)}{6} \\
& =\frac{m(m+1)(m+2)}{6} .
\end{aligned}
$$

The numerator is the product of three consecutive integers, therefore it is divisible by both 2 and 3 , so it is divisible by 6 . Thus the value of the quotient is an integer.
4. 10 points

In $\triangle A B C, A B=27, B C=29$, and median $B M=26$. Find the area of $\triangle A B C$.
Solution 1: Draw parallelogram $A B C D$. Then $C D=A B=27$ and $B D=2 B M=$ 52.


The area of $\triangle A B C$ is half of the area of $A B C D$, and so is the area of $\triangle B C D$. Using Heron's formula (with $s=\frac{B C+C D+B D}{2}$ ), we have that the area of $\triangle B C D$ is

$$
\begin{aligned}
\sqrt{s(s-B C)(s-C D)(s-B D)} & =\sqrt{54(54-29)(54-27)(54-52)} \\
& =\sqrt{54 \cdot 25 \cdot 27 \cdot 2} \\
& =270 .
\end{aligned}
$$

Solution 2: Draw parallelogram $A B C D$ with $C D=A B=27$ and $B D=2 B M=52$ as in Solution 1. Let $C H=h$ be an altitude in $\triangle B C D$.


Then

$$
\sqrt{29^{2}-h^{2}}+\sqrt{27^{2}-h^{2}}=B H+H D=B D=52 .
$$

Solving this equation gives $h=\frac{135}{13}$, so $\operatorname{Area}(\triangle A B C)=\operatorname{Area}(\triangle B C D)=\frac{1}{2} \cdot 52 \cdot \frac{135}{13}=$ 270.

## 5. 10 points

There are $p$ points in space, no four of which are in the same plane with the exception of $q$ (where $q<p$ ) points which are all in the same plane. Find the number of (distinct) planes in space each containing three of the points.

Solution: Since it takes three points to form a plane in general, we can form ( $\left.\begin{array}{l}p \\ 3\end{array}\right)$ planes. However, since $q$ of these points are in the same plane, we have counted this plane $\binom{q}{3}$ times. Thus, the number of distinct planes is $\binom{p}{3}-\binom{q}{3}+1$.

## 6. 10 points

Does there exist a triangle in the $x y$-plane with $60^{\circ}$ angle such that its vertices have integer coordinates?

## Solution:

Assume that such a triangle exists. Consider the following two cases.
Case 1: one of the sides adjacent to the $60^{\circ}$ angle is parallel to one of the axes. Then without loss of generality, we can assume that the vertex of the $60^{\circ}$ angle is at the origin, another vertex is on the positive $x$-axis, and the third vertex is $(a, b)$, where $a, b>0$. Then $\frac{b}{a}=\tan \left(60^{\circ}\right)=\sqrt{3}$, which is impossible since $\sqrt{3}$ is irrational.


Case 2: none of the sides adjacent to the $60^{\circ}$ angle is parallel to either of the axes. Then without loss of generality, we can assume that the vertex of the $60^{\circ}$ angle is at the origin $O$, and the other vertices are at points $A=(a, b)$ and $B=(c, d)$ such that $a, b, d>0$, and the ray $O A$ is between the ray $O B$ and the positive $x$-axis. Let $\alpha$ be the angle formed by $O A$ and the positive $x$-axis, and let $\beta$ be the angle formed by $O B$ and the positive $x$-axis. Then we have $60^{\circ}=\beta-\alpha$. Therefore $\sqrt{3}=\tan \left(60^{\circ}\right)=\tan (\beta-\alpha)=$ $\frac{\tan \beta-\tan \alpha}{1+\tan \beta \tan \alpha}=\frac{\frac{d}{c}-\frac{b}{a}}{1+\frac{d}{c} \frac{b}{a}}=\frac{a d-b c}{a c+b d}$, which is again impossible since $\sqrt{3}$ is irrational.


Therefore, such a triangle does not exist.

