Department of Mathematics Third Annual High School Problem Solving Contest November 1, 2018

Name:		
School:		
Grade:		
Email:		

Two students attempted to solve a quadratic equation, $x^2 + bx + c = 0$. Although both students did the work correctly, the first miscopied the middle term and obtained the solution set $\{-3, 4\}$. The second student miscopied the constant term and obtained the solution set $\{-1, 5\}$. What are the correct solutions?

An unbiased coin is tossed. If the result is a head, then a pair of regular unbiased dice is rolled and the number obtained by adding the numbers on the top faces is noted down. If the result is a tail, then a card from a well-shuffled pack of eleven cards numbered $2, 3, 4, \ldots, 11, 12$ is picked and the number on the card is noted down. What is the probability that the noted number is 7 or 8?

Prove that for any integer number m, the value of

$$\frac{m}{3} + \frac{m^2}{2} + \frac{m^3}{6}$$

is also an integer.

In $\triangle ABC$, AB = 27, BC = 29, and median BM = 26. Find the area of $\triangle ABC$.

There are p points in space, no four of which are in the same plane with the exception of q (where q < p) points which are all in the same plane. Find the number of (distinct) planes in space each containing three of the points.

Does there exist a triangle in the xy-plane with 60° angle such that its vertices have integer coordinates?