Department of Mathematics Fourth Annual Problem Solving Contest November 14, 2018

Solutions

1. **10 points**

Numbers a, b, and c are chosen randomly and independently from the set

$$\{n \in \mathbb{Z} \mid -5 \le n \le 5\}.$$

What is the probability that the function

$$f(x) = \begin{cases} ax+b & \text{if } x \le a \\ x^2 & \text{if } x > a \end{cases}$$

is differentiable everywhere?

Solution:

Function f(x) defined above is differentiable everywhere except possibly at x = c. It is differentiable at x = c if both the values and the derivatives of ax + b and x^2 agree at x = c. That is, if $ac + b = c^2$ and a = 2c. Substituting 2c for a in the first equation and solving for b gives $b = -c^2$. So, once the value of c is chosen, the values of a and b are determined uniquely. From the set $\{n \in \mathbb{Z} \mid -5 \le n \le 5\}$, only the values c = 0, $c = \pm 1$, and $c = \pm 2$ produce a and b that are also in this set. Therefore the probability of such a choice of c, a, and b is $\frac{5}{11} \cdot \frac{1}{11} \cdot \frac{1}{11} = \frac{5}{1331}$.

2. **10 points** Prove that for every positive integer n

$$n! \le \left(\frac{n+1}{2}\right)^n.$$

Solution: For any positive integer n, apply the AM-GM inequality to the set $\{1, 2, ..., n\}$ of positive integers. This gives

$$\sqrt[n]{1 \cdot 2 \cdots n} \le \frac{1 + 2 + \cdots + n}{n}$$

which becomes

$$n! \le \left(\frac{n+1}{2}\right)^n.$$

3. **10 points** Let $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$ be such that

$$\sum_{k=1}^{n} \frac{a_k}{4k+1} = 0.$$

Prove that the function

$$f(x) = \sum_{k=1}^{n} a_k \cos((4k+1)x), \ x \in \mathbb{R}$$

has at least one zero in the interval $(0, \pi/2)$.

Solution: Consider the antiderivative of f

$$F(x) = \sum_{k=1}^{n} \frac{a_k}{4k+1} \sin((4k+1)x), \ x \in \mathbb{R}.$$

The function F satisfies the conditions of Rolle's Theorem on $[0, \pi/2]$:

- (1) continuous on $[0, \pi/2]$,
- (2) differentiable on $(0, \pi/2)$, and

(3)
$$F(0) = 0 = \sum_{k=1}^{n} \frac{a_k}{4k+1} = F(\pi/2),$$

and hence, its derivative f has at at least one zero in the interval $(0, \pi/2)$.

4. **10 points**

Consider the collection of all three element subsets of the set $\{1, 2, 3, \ldots, 299, 300\}$. Determine the number of these subsets for which the sum of the three elements is a multiple of 3.

Solution:

For $0 \le j \le 2$, let $A_j = \{x \mid 1 \le x \le 300, x \equiv j \pmod{3}\}$. Then, the desired subsets of the form $\{a, b, c\}$ in the problem arise only from two cases:

- (a) All of a, b, c are from A_0 , or A_1 , or A_2 ; or
- (b) One of a, b, c is from A_0 , another from A_1 , and the third from A_2 .

Thus, the desired number of such subsets is

$$3\binom{100}{3} + 100^3 = 1,485,100.$$

5. **10 points** Let F_n denote the n^{th} Fibonacci number (with $F_0 = F_1 = 1$). Show that the product of any four consecutive Fibonacci numbers $(F_n F_{n+1} F_{n+2} F_{n+3})$ is the area of a Pythagorean triangle (right triangle whose sides have integer lengths).

Solution: Suppose $F_{n+1} = a$ and $F_{n+2} = b$. Then $F_n = b - a$ and $F_{n+3} = b + a$. Since $(b^2 - a^2)^2 + (2ab)^2 = (b^2 + a^2)^2$, we have that $b^2 - a^2$, 2ab, $b^2 + a^2$ form the sides a Pythagorean triangle with area $ab(b^2 - a^2) = F_n F_{n+1} F_{n+2} F_{n+3}$.

6. **10 points**

Let $\{a_1, a_2, \ldots, a_{100}\}$ be a set of 100 integer numbers. Prove that this set contains a subset in which the sum of all elements is divisible by 100.

Solution:

Consider the subsets $\{a_1\}, \{a_1, a_2\}, \ldots, \{a_1, a_2, \ldots, a_{100}\}$. Let $S_1, S_2, \ldots, S_{100}$ be the sums of their elements, respectively. If all $S_i \mod 100$ are distinct, then one of them is 0, so we have a required subset. If $S_i \mod 100 = S_j \mod 100$ for some i < j, then the subset $\{a_{i+1}, \ldots, a_j\}$ has the sum of elements divisible by 100.