Department of Mathematics Fourth Annual Problem Solving Contest November 14, 2018 Solutions

1.

10 points

Numbers a, b, and c are chosen randomly and independently from the set

$$
\{n \in \mathbb{Z} \mid-5 \leq n \leq 5\}
$$

What is the probability that the function

$$
f(x)= \begin{cases}a x+b & \text { if } x \leq c \\ x^{2} & \text { if } x>c\end{cases}
$$

is differentiable everywhere?

Solution:

Function $f(x)$ defined above is differentiable everywhere except possibly at $x=c$. It is differentiable at $x=c$ if both the values and the derivatives of $a x+b$ and x^{2} agree at $x=c$. That is, if $a c+b=c^{2}$ and $a=2 c$. Substituting $2 c$ for a in the first equation and solving for b gives $b=-c^{2}$. So, once the value of c is chosen, the values of a and b are determined uniquely. From the set $\{n \in \mathbb{Z} \mid-5 \leq n \leq 5\}$, only the values $c=0$, $c= \pm 1$, and $c= \pm 2$ produce a and b that are also in this set. Therefore the probability of such a choice of c, a, and b is $\frac{5}{11} \cdot \frac{1}{11} \cdot \frac{1}{11}=\frac{5}{1331}$.
2. 10 points Prove that for every positive integer n

$$
n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

Solution: For any positive integer n, apply the AM-GM inequality to the set $\{1,2, \ldots, n\}$ of positive integers. This gives

$$
\sqrt[n]{1 \cdot 2 \cdots \cdot n} \leq \frac{1+2+\cdots+n}{n}
$$

which becomes

$$
n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

3. 10 points Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ be such that

$$
\sum_{k=1}^{n} \frac{a_{k}}{4 k+1}=0
$$

Prove that the function

$$
f(x)=\sum_{k=1}^{n} a_{k} \cos ((4 k+1) x), x \in \mathbb{R}
$$

has at least one zero in the interval $(0, \pi / 2)$.
Solution: Consider the antiderivative of f

$$
F(x)=\sum_{k=1}^{n} \frac{a_{k}}{4 k+1} \sin ((4 k+1) x), x \in \mathbb{R}
$$

The function F satisfies the conditions of Rolle's Theorem on $[0, \pi / 2]$:
(1) continuous on $[0, \pi / 2]$,
(2) differentiable on $(0, \pi / 2)$, and
(3) $F(0)=0=\sum_{k=1}^{n} \frac{a_{k}}{4 k+1}=F(\pi / 2)$,
and hence, its derivative f has at at least one zero in the interval $(0, \pi / 2)$.
4. 10 points

Consider the collection of all three element subsets of the set $\{1,2,3, \ldots, 299,300\}$. Determine the number of these subsets for which the sum of the three elements is a multiple of 3 .

Solution:

For $0 \leq j \leq 2$, let $A_{j}=\{x \mid 1 \leq x \leq 300, x \equiv j(\bmod 3)\}$. Then, the desired subsets of the form $\{a, b, c\}$ in the problem arise only from two cases:
(a) All of a, b, c are from A_{0}, or A_{1}, or A_{2}; or
(b) One of a, b, c is from A_{0}, another from A_{1}, and the third from A_{2}.

Thus, the desired number of such subsets is

$$
3\binom{100}{3}+100^{3}=1,485,100
$$

5. 10 points Let F_{n} denote the $n^{\text {th }}$ Fibonacci number (with $F_{0}=F_{1}=1$). Show that the product of any four consecutive Fibonacci numbers $\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)$ is the area of a Pythagorean triangle (right triangle whose sides have integer lengths).

Solution: Suppose $F_{n+1}=a$ and $F_{n+2}=b$. Then $F_{n}=b-a$ and $F_{n+3}=b+a$. Since $\left(b^{2}-a^{2}\right)^{2}+(2 a b)^{2}=\left(b^{2}+a^{2}\right)^{2}$, we have that $b^{2}-a^{2}, 2 a b, b^{2}+a^{2}$ form the sides a Pythagorean triangle with area $a b\left(b^{2}-a^{2}\right)=F_{n} F_{n+1} F_{n+2} F_{n+3}$.

6. 10 points

Let $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$ be a set of 100 integer numbers. Prove that this set contains a subset in which the sum of all elements is divisible by 100 .

Solution:

Consider the subsets $\left\{a_{1}\right\},\left\{a_{1}, a_{2}\right\}, \ldots,\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$. Let $S_{1}, S_{2}, \ldots, S_{100}$ be the sums of their elements, respectively. If all $S_{i} \bmod 100$ are distinct, then one of them is 0 , so we have a required subset. If $S_{i} \bmod 100=S_{j} \bmod 100$ for some $i<j$, then the subset $\left\{a_{i+1}, \ldots, a_{j}\right\}$ has the sum of elements divisible by 100 .

