Department of Mathematics Fourth Annual Problem Solving Contest November 14, 2018

Name: \qquad

Email:

1. 10 points

Numbers a, b, and c are chosen randomly and independently from the set

$$
\{n \in \mathbb{Z} \mid-5 \leq n \leq 5\}
$$

What is the probability that the function

$$
f(x)= \begin{cases}a x+b & \text { if } x \leq c \\ x^{2} & \text { if } x>c\end{cases}
$$

is differentiable everywhere?
2. 10 points

Prove that for every positive integer n

$$
n!\leq\left(\frac{n+1}{2}\right)^{n}
$$

3. 10 points

Let $n \in \mathbb{N}$ and $a_{1}, a_{2}, \ldots, a_{n} \in \mathbb{R}$ be such that

$$
\sum_{k=1}^{n} \frac{a_{k}}{4 k+1}=0
$$

Prove that the function

$$
f(x)=\sum_{k=1}^{n} a_{k} \cos ((4 k+1) x), x \in \mathbb{R}
$$

has at least one zero in the interval $(0, \pi / 2)$.
4. 10 points

Consider the collection of all three element subsets of the set $\{1,2,3, \ldots, 299,300\}$. Determine the number of these subsets for which the sum of the three elements is a multiple of 3 .

5. 10 points

Let F_{n} denote the $n^{\text {th }}$ Fibonacci number (with $F_{0}=F_{1}=1$). Show that the product of any four consecutive Fibonacci numbers $\left(F_{n} F_{n+1} F_{n+2} F_{n+3}\right)$ is the area of a Pythagorean triangle (right triangle whose sides have integer lengths).

6. 10 points

Let $\left\{a_{1}, a_{2}, \ldots, a_{100}\right\}$ be a set of 100 integer numbers. Prove that this set contains a subset in which the sum of all elements is divisible by 100 .

