Department of Mathematics Fourth Annual Problem Solving Contest November 14, 2018

Email: _____

Numbers a, b, and c are chosen randomly and independently from the set

$$\{n \in \mathbb{Z} \mid -5 \le n \le 5\}.$$

What is the probability that the function

$$f(x) = \begin{cases} ax+b & \text{if } x \le c \\ x^2 & \text{if } x > c \end{cases}$$

is differentiable everywhere?

Prove that for every positive integer \boldsymbol{n}

$$n! \le \left(\frac{n+1}{2}\right)^n.$$

Let $n \in \mathbb{N}$ and $a_1, a_2, \ldots, a_n \in \mathbb{R}$ be such that

$$\sum_{k=1}^{n} \frac{a_k}{4k+1} = 0.$$

Prove that the function

$$f(x) = \sum_{k=1}^{n} a_k \cos((4k+1)x), \ x \in \mathbb{R}$$

has at least one zero in the interval $(0, \pi/2)$.

Consider the collection of all three element subsets of the set $\{1, 2, 3, \ldots, 299, 300\}$. Determine the number of these subsets for which the sum of the three elements is a multiple of 3.

Let F_n denote the n^{th} Fibonacci number (with $F_0 = F_1 = 1$). Show that the product of any four consecutive Fibonacci numbers $(F_n F_{n+1} F_{n+2} F_{n+3})$ is the area of a Pythagorean triangle (right triangle whose sides have integer lengths).

Let $\{a_1, a_2, \ldots, a_{100}\}$ be a set of 100 integer numbers. Prove that this set contains a subset in which the sum of all elements is divisible by 100.