Department of Mathematics Third Annual Problem Solving Contest November 16, 2017
 Solutions

1.

10 points
Real numbers a and b are chosen randomly and independently in the interval $[-1,1]$. Find the probability that the line $y=a x+b$ and the parabola $y=x^{2}$ intersect.
Solution: The line and the parabola intersect if the equation $x^{2}=a x+b$ has real solutions, i.e. if the discriminant of the equation $x^{2}-a x-b=0$ is nonnegative: $a^{2}+4 b \geq 0$. This inequality is equivalent to $b \geq-\frac{a^{2}}{4}$, thus we have to find the ratio of the area of the region given by $b \geq-\frac{a^{2}}{4},-1 \leq a \leq 1,-1 \leq b \leq 1$, to the area of the whole square $-1 \leq a \leq 1,-1 \leq b \leq 1$. The area of the above region is $\int_{-1}^{1}\left(1+\frac{a^{2}}{4}\right) d a=\frac{13}{6}$, and the area of the whole square is 4 . Thus, the probability of the discriminant being nonnegative is $\frac{13}{24}$.
2. 10 points

Let a, b, c be real numbers with $0<a<1,0<b<1,0<c<1$, and $a+b+c=2$. Prove that

$$
\frac{a}{1-a} \cdot \frac{b}{1-b} \cdot \frac{c}{1-c} \geq 8
$$

Solution: Let $x=1-a, y=1-b$, and $z=1-c$. The desired inequality is then equivalent to

$$
\frac{1-x}{x} \cdot \frac{1-y}{y} \cdot \frac{1-z}{z} \geq 8
$$

which, in turn, is equivalent to

$$
\frac{1}{x}+\frac{1}{y}+\frac{1}{z} \geq 9
$$

Using the AM-HM inequality and $x+y+z=1$, this inequality follows.
3. 10 points

A unit cube is projected onto a plane. Prove that the sum of the squares of the lengths of the projections of all its edges is equal to 8 .

Solution: Choose the coordinate system so that points $A(0,0,0), B(1,0,0), C(0,1,0)$, and $D(0,0,1)$ are four of the cube's vertices. Let (x, y, z) be a unit vector normal to the plane, and let α, β, and γ be the angles that this vector forms with the edges $A B, A C$, and $A D$, respectively. Then $x=\cos \alpha, y=\cos \beta$, and $z=\cos \gamma$, therefore, $\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma=1$. The lengths of the projections of the edges $A B, A C$, and $A D$ onto the plane are $\sin \alpha, \sin \beta$, and $\sin \gamma$, respectively, so the sum of their squares is $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=3-\left(\cos ^{2} \alpha+\cos ^{2} \beta+\cos ^{2} \gamma\right)=2$. Since the cube has a total of 4 edges parallel to each of $A B, A C$, and $A D$, the sum of the squares of the lengths of all their projections is 8 .

4. 10 points

Let $A=\{1,2,3, \ldots, 100\}$ and B be a subset of A having 48 elements. Show that B has two distinct elements x and y whose sum is divisible by 11 .

Solution: For each $n, 0 \leq n \leq 10$, let A_{n} denote the set of integers between 1 and 100 which leave a remainder of n upon division by 11 . Then A_{1} has 10 elements, and $A_{n}, n \neq 1$, has 9 elements each. If $\{a, b\}$ is any two-element subset of $\{1,2,3, \ldots, 100\}$, then 11 divides $a+b$ if and only if either both a, b are in A_{0} or else a is in A_{k} and b is in A_{11-k} for some $k, 1 \leq k \leq 10$.
Consider any set B with 48 elements. If B contains two elements from the set A_{0}, then we are done. Similarly, if B contains an element from A_{k} and another from $A_{11-k}, 1 \leq$ $k \leq 10$ then again, their sum is divisible by 11. Thus, B can contain one element from $A_{0}, 10$ from A_{1}, and 9 from the sets A_{k} for some 4 values of $k(\neq 10)$, say $k_{1}, k_{2}, k_{3}, k_{4}$, no two of which add up to 11 .

But these account only for 47 elements. Hence, there must be an element which is either in A_{0} or A_{10} or in $A_{11-k_{j}}, 1 \leq j \leq 4$. Thus, we can always find either two elements a, b that are both in A_{0} or one element a in A_{k} and another element b in A_{11-k} for any subset B with 48 elements. In either case, 11 divides $a+b$.
5. 10 points

Determine all non-negative integral pairs (x, y) for which

$$
(x y-7)^{2}=x^{2}+y^{2} .
$$

Solution: The given equation is equivalent to

$$
(x y-6)^{2}+13=(x+y)^{2},
$$

which, in turn, is equivalent to

$$
13=((x+y)+(x y-6))((x+y)-(x y-6)) .
$$

Since 13 is prime, the only possible (integer) factors are $\pm 1, \pm 13$. So, we have four cases:
(a) $(x+y)+(x y-6)=1,(x+y)-(x y-6)=13$,
(b) $(x+y)+(x y-6)=13,(x+y)-(x y-6)=1$,
(c) $(x+y)+(x y-6)=-1, \quad(x+y)-(x y-6)=-13$,
(d) $(x+y)+(x y-6)=-13, \quad(x+y)-(x y-6)=-1$.

Case (a) yields solutions $(7,0)$ and $(0,7)$. Case (b) yields $(3,4)$ and $(4,3)$. Cases (c) and (d) do not have any non-negative solutions. Thus, the only non-negative integral solutions are $(7,0),(0,7),(3,4)$, and $(4,3)$.
6. 10 points

Prove that the sequence

$$
x_{n}=\sqrt{2+\sqrt{2+\sqrt{2+\sqrt{\ldots \sqrt{2+\sqrt{2}}}}}}(n \text { roots }), n \in \mathbb{N}
$$

is convergent and find $\lim _{n \rightarrow \infty} x_{n}$.
Solution: The sequence is defined by the recursive relation

$$
\begin{equation*}
x_{1}=\sqrt{2}, x_{n+1}=\sqrt{2+x_{n}}, n \geq 1 \tag{1}
\end{equation*}
$$

It can be shown via induction that the sequence is bounded:

$$
0 \leq x_{n} \leq 2
$$

and increasing.
Hence, by the Monotone Convergence Theorem,

$$
\lim _{n \rightarrow \infty} x_{n} \in[0,2]
$$

exists.
Passing to the limit in (1) as $n \rightarrow \infty$, we arrive at the equation

$$
x=\sqrt{2+x}
$$

solving which, in view of the non-negativity of the limit, we find $x=2$.

