Math Field Day 2011

Mad Hatter 6-8

CSU Fresno http://www.csufresno.edu/math

16 April 2011

Mad Hatter 6-8

The Mad Hatter Marathon is a competition in rapid computation and problem solving. You will find that you do not have time to solve every problem. After a few minutes you may feel "mentally out of breath." Do not let this discourage you. Your fellow contestants feel the same way. That is why this contest is called Mad Hatter Marathon!

Mad Hatter 6-8

The Mad Hatter Marathon is divided into two problem solving periods, each lasting 45 minutes. Between the two periods there will be a 15 minute break.

Part I

Math Field
Day 2011
CSU Fresno

Part I
Part 1
Problems 1-15
Part $1:$
Problems
16-30

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Part I

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Part I

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You mav move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Part I

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Part I

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Part I

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Rules and Scoring

You may use pencil and scratch paper to do calculations, but calculators are not allowed.

Your score is the total number of correct answers, so give the best answer that you can in the time available for each problem. There is no penalty for guessing.

Ready... Set... Go!

Math Field
Day 2011
CSU Fresno

Part I
Part 1

Prepare to begin the Mad Hatter Marathon!

Part I - Problem 1

Math Field
Day 2011
CSU Fresno

Part I
Part I:
Problems 1-15
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Pari I: Problems 16-30

If 20% of a number is 12 , what is 30% of the same number?
A 20
(B) 24
(C) 15
(D) 30
(ㄷ) 18

Part I - Problem 2

Math Field
Day 2011
CSU Fresno

Part I
Part 1:
Problems 1-15
Problem 1
Problem 3
Problem 4
Problem 5
Problem 6
Probiem 7
Problem 8
Problem 9
Problem 16
Probem 14
Problem 12
Problem 13
Problem 14
Probem 15
Part I: Problems 16-30

The sum

$$
1+2+3+4+5+\cdots+2011
$$

is equal to:
A $1,968,407$
(B) $2,023,066$
(C) $2,011,314$
(D) $5,357,896$
(ㄷ) $2,205,500$

Part I - Problem 3

Ten contestants competed on a game show. The first six contestants won an average of $\$ 80$. The next four won an average of $\$ 70$. The ten contestants won an average of:
A $\$ 74$
(B) $\$ 78$
(C) $\$ 76$
(D) $\$ 72$
(E) $\$ 75$

Part I - Problem 4

An athlete's target heart rate, in beats per minute, is 80% of the theoretical maximum heart rate. The maximum heart rate is found by subtracting the athlete's age, in years, from 220. To the nearest whole number, what is the target heart rate of an athlete who is 27 years old?
A 135
(B) 154
(C) 172
(D) 196
(E) 237

Part I - Problem 5

Part I

Part I:
Problems 1-15
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Part I:
Problems 16-30

How many cubes in the 20th structure?
A 28
B 37
C 59
(D) 43
(E) 40

Part I - Problem 6

Part 1
Part I:
Problems 1-15 Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Probiem 8
Problem ic
Problem 11
Problem 12
Problem 13
Problem 14
Probiem 15
Part 1 Problems 16-30

Uncle bookworm eats two books a week; Aunt bookworm eats one book every two months. In a year Uncle eats how many more books than Aunt eats?
(A) 20
(B) 98
(C) 108
(D) 54
(ㄷ) 76

Part I - Problem 7

If the distance
between dots along a row and along a column is 1 unit, then the area of the parallelogram in square units is:
A 4 square units
(B) 5 square units
(C) 6 square units
(D) 6.5 square units
(ㄹ) 8 square units

Part I - Problem 8

In a recent month, the dates of three Sundays were even numbers. What day of the week was the 19th of the month?
(A) Monday

B Tuesday
(C) Wednesday
(D) Thursday
(E) Friday

Part I - Problem 9

Zelda has 16 CD's, 28 DVD's, and 60 cassette tapes. She would like to share these items with three of her friends. If Zelda's share is equal to that of her friends, how many items will each person receive?
A 108
(B) 26
(C) 30
(D) 52
(c) 24

Part I - Problem 10

This year there were $11 \times 121-11 \times 11$ fewer turkeys eaten than last year. How many fewer turkeys were eaten this year?
(A) 120
(B) 121
(C) 1200
(D) 1210
(E) none of these

Part I - Problem 11

A 1991
(B) 2020

C 2006
(D) 9
(E) none of these

Solve for X :
$(2011+2010+2009)-(2008+2007+2006)=2000-X$

Part I - Problem 12

A bakery lowered its price for cookies from $\$ 0.50$ to $\$ 0.40$ each. If Mick has \$4, how many more cookies can he buy now than he could before?
A 1
(B) 2
(c) 3
(D) 4
(E) 5

Part I - Problem 13

Grawp wrote a word in secret code. In this code, the number 26 stood for the letter "A", the number 25 stood for "B", and so on. In this code, the sequence 92611112 represents which word?
A RAPPY
(B) DOTTY
(c) HAPPY
(D) RATTY
© PATTY

Part I - Problem 14

Math Field
Day 2011
CSU Fresno

Part I
Part 1:
Problems 1-15
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 18
Problem 14
Problem 15
Part I Problems 16-30

What is the sum of the two largest primes less than 40 ?
© 70
(B) 52
(0) 64
(1) 68
(토 76

Part I - Problem 15

Twenty-seven minutes after 11 A.M. is how many minutes before 1 P.M.?
A 33
(B) 87
(C) 63
(D) 107
(E) 93

Part I - Problem 16

$20112011201120112011 \div 2011$ is equal to:
A 11111
(B) 1001001001001001
(C) 1001001001001
(D) 10001000100010001
(E) 1000100010001

Part I - Problem 17

Math Field
Day 2011
CSU Fresno

Part I
Part I:
Problems 1-15
Part I:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Probiem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 20
Problem 30
$(2011-2009) \times(2009-2007) \times(2007-2005) \times \cdots \times$ $(5-3) \times(3-1)=$
(1) 2^{1005}
(B) 2^{2011}
(C) 2^{4020}
(C) 2^{1010}
(ㄷ) 2^{510}

Part I - Problem 18

How many revolutions must the large gear make before the arrows line up again?
A 6
(B) 4
(C) 24
(D) 9
(ㄷ) 12

Part I - Problem 19

When you divide

$$
(1+4)+(1+8)+(1+12)+(1+16)+(1+20)+(1+24)
$$

by 4 the remainder is:
(A) 0
(B) 1
(C) 2
(D) 3
(E) none of these

Part I - Problem 20

Yoda has seven coins worth a total of $\$ 0.49$. How many nickels does he have?
A 0
(B) 1
(C) 2
(D) 4
(E) 6

Part I - Problem 21

500 nickels have the same value as how many quarters?
A 100
(B) 250
(C) 50
(D) 75
(E) 200

Part I - Problem 22

If 3 of every 150 astronauts walk on the moon, then what percentage of all astronauts walk on the moon?
A 15
(B) 50
(C) 2
(D) 10
(E) 3

Part I - Problem 23

Two six-sided dice are rolled, each with two black, two green, and two red faces. What is the probability that both dice show the same color?
A $1 / 3$
(B) $1 / 12$
(C) $1 / 36$
(D) $1 / 9$
(E) none of these

Part I - Problem 24

At most how many students can sit in a row of 25 chairs, if seated students must be separated by at least one empty chair?
A 12
(B) 24
(C) 17
(D) 13
(ㄷ) 15

Part I - Problem 25

Math Field
Day 2011
CSU Fresno

Part I
Part I:
Problems 1-15
Part I:
Problems 16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30

The difference between $\frac{5}{7}$ and its reciprocal is:
(A) $\frac{35}{7}$
(B) $\frac{24}{35}$
(C) $\frac{19}{35}$
(D) $\frac{7}{5}$
(E) $\frac{1}{7}$

Part I - Problem 26

On my scooter, the rear wheel's diameter is 5 centimeters more than the front wheel's diameter. How much bigger is the rear wheel's circumference?

A 10π centimeters
(B) 5π centimeters
(C) $25 \pi^{2}$ centimeters
(D) 2.5π centimeters
(ㄹ) 15π centimeters

Part I - Problem 27

Part I

Part 1
Problems 1-15
Part I:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Probem 28
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30

Pictured

is a regular hexagon. What is its area?
A $2 \sqrt{3}$
(B) $3 \sqrt{3}$
(C) $6 \sqrt{3}$
(D) $12 \sqrt{3}$
(ㄷ) None of these

Part I - Problem 28

Math Field
Day 2011
CSU Fresno

Part I

Part I:
Problems 1-15
Part I:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30

If 10 widgets $=15$ gloops, then 24 gloops $=$ \qquad widgets.
A 32
(B) 16
(C) 12
(D) 36
(E) 14

Part I - Problem 29

In the number $0.1234512345 \ldots$ (recurring) what is the 2011th digit after the decimal point?
(A) 1
(B) 2
(C) 3
(D) 4
(E) 5

Part I - Problem 30

If $2 / 3$ of a cup of fish food can feed 12 goldfish, then 4 cups of food should be able to feed how many goldfish?
A 18
(B) 76
(C) 72
(D) 64
(E) 48

Mad Hatter - Part 2

Math Field
Day 2011
CSU Fresno

Part II
Part II:
Problems 1-15
Part II:
Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Mad Hatter - Part 2

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer
in the corresponding space on the Scantron form.

Mad Hatter - Part 2

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer
in the corresponding space on the Scantron form.

Mad Hatter - Part 2

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You mav move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Mad Hatter - Part 2

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Mad Hatter - Part 2

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Mad Hatter - Part 2

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Ready... Set... Go!

Math Field
Day 2011
CSU Fresno

Part II
Part II:

Prepare to restart the Mad Hatter Marathon!

Part II - Problem 1

If the Weasleys' Wizard Wheezes "OPEN" sign is a square with a perimeter of 12 feet, then the area of the sign is:
(A) 3 square feet

B 16 square feet
(C) 9 square feet
(D) 18 square feet
(ㄷ) 24 square feet

Part II - Problem 2

The average of seven whole numbers is 7 . If six of the numbers are 1, then the seventh number is:
A 7
(B) 1
(C) 43
(D) 28
(ㄷ) 49

Part II - Problem 3

A dealer paid Bunny Fufu 50 cents for each of his decorated eggs. The dealer then sold each egg for $\$ 5$. Bunny Fufu got what percentage of the purchase price for his eggs?
A 2%
(B) 25%
(c) 5%
(D) 20%
(ㄷ) 10%

Part II - Problem 4

Math Field
Day 2011
CSU Fresno

Part II
Part II:
Problems 1-15
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Pari II: Problems 16-30

Solutions

When fully expanded, 1000^{999} has how many digits?
© 999
(B) 9,000
(C) 3,004
(2) 2,998
(ㄷ) 8,997

Part II - Problem 5

Math Field
Day 2011
CSU Fresno

Part II
Part II:
Problems 1-15
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Part II: Problems 16-30

Solutions

How many of the twelve positive factors of 200 are divisible by 4 ?
(A) 4
(B) 7
(C) 6
(D) 8
(E) 10

Part II - Problem 6

The Terex Titan dump truck can carry $283,520 \mathrm{kgs}$ of sand. Brak's pickup truck can carry 650 kgs. How many full loads of sand must Brak haul in order to equal one full load of the Terex Titan?
A less than 300 loads
(B) between 300 and 400 loads
(C) between 401 and 500 loads
(D) between 501 and 600 loads
(E) more than 600 loads

Part II - Problem 7

Math Field
Day 2011
CSU Fresno

Part II
Part II:
Problems 1-15
Problem 1
Problem 2
Problem 3
Problem 4
Problem 5
Problem 6
Problem 7
Problem 8
Problem 9
Problem 10
Problem 11
Problem 12
Problem 13
Problem 14
Problem 15
Part II:
Problems 16-30

Solutions
$3^{2011}+3^{2011}+3^{2011}=\ldots$
A 3^{6033}
(B) 9^{2011}
(C) 9^{6033}
(D) 9^{2012}
(c) 3^{2012}

Part II - Problem 8

If you have seven flavors of ice cream and three types of cones, how many different single scoop ice cream cones can you make?
A 21
(B) 7
(C) 10
(D) 35
(ㄷ) 24

Part II - Problem 9

Data gained weight each week over a six-week period. His gains were recorded as
$1.1 \mathrm{lbs} \quad 0.75 \mathrm{lb} \quad 1.2 \mathrm{lbs} \quad 0.5 \mathrm{lb} \quad 1.3 \mathrm{lbs} 0.25 \mathrm{lb}$
What was Data's average weekly gain in pounds?
A 0.9 lbs
(B) 0.85 lbs
(c) 1.2 lbs
(2) 0.78 lbs
(E) 1.05 lbs

Part II - Problem 10

$$
\begin{aligned}
1 & =1 \\
3+5 & =8 \\
7+9+11 & =27 \\
13+15+17+19 & =64 \\
21+23+25+27+29 & =125
\end{aligned}
$$

If this number triangle continues indefinitely with the same pattern, what is the sum of the 9th row?
A 640
(B) 1000
(C) 1225
(D) 729
(E) 947

Part II - Problem 11

	4	\%	-	\bigcirc	4		\checkmark	4	9		\cdots	\bigcirc	\square	く			\cdots

If this pattern continues indefinitely, what symbol will be in the 460th square?
(A) 9
(B) 8
(C) \diamond
(D) \&

Part II - Problem 12

Banjo the monkey has a fair coin with one side colored blue and the other side colored red. If he flips the coin three times, what is the probability that the outcome is two red and one blue (not necessarily in that order)?
(A) $\frac{1}{2}$
(B) $\frac{1}{3}$
(C) $\frac{1}{4}$
(D) $\frac{3}{8}$
(E) $\frac{1}{8}$

Part II - Problem 13

Wario made a list of three-digit whole numbers, and every digit used was odd. At most how many different numbers were on his list?
A 75
(B) 625
(C) 525
(D) 125
(E) 150

Part II - Problem 14

Last Saturday, Amelie sold her paintings at a local flea market. In the morning she sold one-third of the paintings. She sold one-fourth of the remaining paintings in the afternoon. When the market closed she had 9 paintings left. How many paintings did she bring to to the market with her that morning?
A 24
(B) 16
(C) 20
(D) 26
(ㄷ) 18

Part II - Problem 15

A domino set contains all number pairs from double-zero to double-six with each number pair occurring only
 once. For example the pictured domino counts as two-four and four-two. How many dominos are in the set?
A 18
(B) 24
(C) 36
(D) 28
(ㄷ) 32

Part II - Problem 16

Sue is twice as old as her sister Kate. If Kate was seven a year ago, how old will Sue be three years from now?
A 11
(B) 17
(C) 12
(D) 15
(ㄷ) 19

Part II - Problem 17

In Amidala's kitchen are three cookie jars, painted red, blue, and green. The green jar has two more cookies than the blue jar, and the blue jar has two more cookies than the red jar. If there is a combined total of 30 cookies in the three jars, then how many cookies are in the red jar?
A 7
(B) 10
(C) 8
(D) 6
(ㄷ) 11

Part II - Problem 18

Part II - Problem 19

Math Field
Day 2011
CSU Fresno

Part II
Part II:
Problems 1-15
Part II:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Solutions

7 kilograms plus 27 grams plus 71 milligrams equals how many grams?
(4) 103
(B) 727.21
(0) 7027.71
(D) 7027.071
(ㄷ) 7.98

Part II - Problem 20

Math Field
Day 2011
CSU Fresno

Part II

Part II:
Problems 1-15
Part II:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 28
Problem 24
Probiem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Solutions

What fraction of the circle is colored?
A $\frac{3}{6}$
(B) $\frac{4}{6}$
(C) $\frac{3}{4}$
(D) $\frac{4}{5}$

(ㄷ) $\frac{5}{12}$

Part II - Problem 21

Part II - Problem 22

If this pattern continues, how many white triangles will there be in the next figure?
A 33
(B) 60
(C) 81
(D) 48
(E) 40

Part II - Problem 23

Of the following, which has an odd quotient when divided by 2?
A $456,456,456,456,456$
(B) $678,678,678,678,678$
(C) $432,432,432,432,432$
(D) $876,876,876,876,876$
(ㄷ) $380,380,380,380,380$

Part II - Problem 24

Part II - Problem 25

If my bad hair day began 840 minutes before 8:40 PM, then my bad hair day began at:
(A) 7:40 AM
(B) $7: 20 \mathrm{AM}$
(c) $8: 40 \mathrm{AM}$
(D) $6: 10 \mathrm{AM}$
(E) 6:40 AM

Part II - Problem 26

Madeleine has two 600 ml pitchers of orange juice. One pitcher is $1 / 3$ full and the other is $2 / 5$ full. If she adds water to fill each pitcher completely, then pours both pitchers into one large container, what fraction of the mixture in the large container is orange juice?
A $3 / 8$
(B) $1 / 8$
(C) $11 / 30$
(D) $4 / 15$
(ㄷ) $9 / 16$

Part II - Problem 27

Math Field
Day 2011
CSU Fresno

Part II

Part II:
Problems 1-15
Part II:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 29
Problem 30
Solutions

What is the value of \mathbf{A} above?
A 84
(B) 12
(C) 26
(D) 48
(ㄷ) 50

Part II - Problem 28

Part II
Part II:
Problems 1-15
Part II:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Probiem 22
Problem 23
Problem 24
Problem 25
Problem 26

Clank imagined two thousand whole numbers whose product is equal to 2000. What is the greatest possible sum of Clank's numbers?
A 2011
(B) 3999
(C) 5015
(D) 407
(ㄷ) 9831

Part II - Problem 29

Math Field
Day 2011
CSU Fresno

Part II
Part II:
Problems 1-15
Part II:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Probiem 26
Problem 27
Problem 28
Problem 29
Problem 30
Solutions

What is the area of triangle $A B C$?
A 48
(B) 59.5
(C) 64
(D) 66
(ㄷ) 72.5

Part II - Problem 30

Math Field
Day 2011
CSU Fresno

Part II

Part II:
Problems 1-15
Part II:
Problems
16-30
Problem 16
Problem 17
Problem 18
Problem 19
Problem 20
Problem 21
Problem 22
Problem 23
Problem 24
Problem 25
Problem 26
Problem 27
Problem 28
Problem 20
Problem 30
Solutions

If $X \diamond Y$ means $\frac{X+Y}{2}$ then $(5 \diamond 7) \diamond 10$ is
(A) 8

B 16
(C) 12
(D) 6
(ㄷ) 30

Solutions

Math Field
Day 2011
CSU Fresno
Part II
Part II:
Problems 1-15
Part II:
Problems
16-30
Solutions

The correct answer choices are on the next page.

Math Field Day 2011

CSU Fresno

Part II
Part II:
Problems 1-15
Part II:
Problems
16-30
Solutions

Part I

1	e	2	b	3	c	4	b	5	c	6	b
7	a	8	c	9	b	10	d	11	a	12	b
13	a	14	d	15	e	16	d	17	a	18	a
19	c	20	a	21	a	22	c	23	a	24	d
25	b	26	b	27	c	28	b	29	a	30	c

Part II

1	C	2	C	3	e	4	d	5	c	6	C
7	e	8	a	9	b	10	d	11	b	12	d
13	d	14	e	15	d	16	e	17	c	18	a
19	d	20	e	21	e	22	e	23	b	24	b
25	e	26	C	27	d	28	b	29	d	30	a

