Math Field Day 2011

Math Field Day 2011 Mad Hatter 6-8

CSU Fresno http://www.csufresno.edu/math

16 April 2011

Mad Hatter 6-8

Math Field Day 2011 CSU Fresno

> The Mad Hatter Marathon is a competition in rapid computation and problem solving. You will find that you do not have time to solve every problem. After a few minutes you may feel "mentally out of breath." Do not let this discourage you. Your fellow contestants feel the same way. That is why this contest is called *Mad Hatter Marathon*!

Mad Hatter 6-8

Math Field Day 2011

The Mad Hatter Marathon is divided into two problem solving periods, each lasting 45 minutes. Between the two periods there will be a 15 minute break.

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

• This part of the exam consists of 30 problems.

- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

As soon as you have solved the problem mark your answer in the corresponding space on the Scantron form.

Rules and Scoring

Math Field Day 2011

Part I

Part I: Problems 1-15

Part I: Problems 16-30 You may use pencil and scratch paper to do calculations, but **calculators are not allowed.**

Your score is the total number of correct answers, so give the best answer that you can in the time available for each problem. There is no penalty for guessing.

◆□ > ◆□ > ◆三 > ◆三 > ・ 三 の < @

Ready... Set... Go!

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

Prepare to begin the Mad Hatter Marathon!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ の < @

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-

Problem 1

Problem 2 Problem 3

Problem

Problem

Droblom

Problem 9

Problem 1

Problem 1:

Problem 13

Problem 14

Part I: Problems 16-30

If 20% of a number is 12, what is 30% of the same number?

2415

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-1

Problem 1

Problem 2

Problem 3

Problem 5

Problem 6

Problem 1

Problem a

Problem 1

Problem 1

Droblem 1

Problem 1

Part I:

Part I: Problems 16-30

The sum

 $1 + 2 + 3 + 4 + 5 + \dots + 2011$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

э.

is equal to:

- 1,968,407
- 2,023,066
- 2,011,314
- 5,357,896
- 2,205,500

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-

Problem 2

Problem 3

Deeleleer

Problem

Problem

Problem

Problem 1

Problem 11

Problem 1

Problem 1

Part I: Problems 16-30 Ten contestants competed on a game show. The first six contestants won an average of \$80. The next four won an average of \$70. The ten contestants won an average of:

A	\$74
B	\$78
0	\$76
D	\$72

\$75

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1 Problem 1 Problem 2 Problem 3 Problem 4 Problem 5 Problem 7 Problem 7 Problem 7 Problem 8 Problem 10 Problem 11 Problem 12

Problem 1: Problem 1: Problem 1: Problem 1:

Part I: Problems 16-30 An athlete's target heart rate, in beats per minute, is 80% of the theoretical maximum heart rate. The maximum heart rate is found by subtracting the athlete's age, in years, from 220. To the nearest whole number, what is the target heart rate of an athlete who is 27 years old?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-1

- Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem 6
- Problem
- Problem
- Problem 9
- Problem 1
- Problem 1
- Problem 1
- Problem 1

Part I: Problems 16-30 Uncle bookworm eats two books a week; Aunt bookworm eats one book every two months. In a year Uncle eats how many more books than Aunt eats?

Math Field Day 2011

CSU Fresno

Part I

- Part I: Problems 1-Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem 5
- Problem 7
- Problem 8
- Problem 9
- Problem 1
- Problem 12
- Problem 13
- Problem 14
- Problem 1

Part I: Problems 16-30

If the distance between dots along a row and along a column is 1 unit, then the area of the parallelogram in square units is:

- 4 square units
- 5 square units
- 6 square units
- 6.5 square units
- 8 square units

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Math Field Day 2011

CSU Fresno

Part I

Part I:

- Problem 2
- Problem 3
- Problem 4
- Problem 5
- Problem 6

Problem 8

- Problem 9
- Problem 10
- Problem 12
- Problem 13
- Problem 14
- Problem 1

Part I: Problems 16-30 In a recent month, the dates of three Sundays were even numbers. What day of the week was the 19th of the month?

- Monday
- Tuesday
- Wednesday
- Thursday
- Friday

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-Problem 1 Problem 2 Problem 3 Problem 4

Problem 5

Problem

Problem 8

Problem 1

Problem 1

Problem 13 Broblem 14

Problem 1

Part I: Problems 16-30 Zelda has 16 CD's, 28 DVD's, and 60 cassette tapes. She would like to share these items with three of her friends. If Zelda's share is equal to that of her friends, how many items will each person receive?

10826

30

0 52

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-1

- Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem (
- Problem
- Problem 8
- Problem 9 Problem 10
- Problem 1
- Problem 1
- Problem 13
- Problem 14

Part I:

This year there were $11 \times 121 - 11 \times 11$ fewer turkeys eaten than last year. How many fewer turkeys were eaten this year?

- 🔕 120
- 121
- 1200
- 1210
- none of these

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-1

- Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem {
- Problem
- Problem :
- Problem 9
- Problem 10 Problem 11
- Problem
- Problem 1
- Problem 1

Part I: Problems 16-30

Solve for X:

(2011 + 2010 + 2009) - (2008 + 2007 + 2006) = 2000 - X

- 19912020
- 2006
- 0 9
- none of these

ロ>
 (日)
 (日)

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-1

- Problem 1
- Problem 2
- Problem 3
- Problem 4
- Problem
- Problem
- Problem
- Problem 1
- Problem 1
- Problem 12
- Problem 1: Problem 1-
- Problem 1

Part I: Problems 16-30 A bakery lowered its price for cookies from \$0.50 to \$0.40 each. If Mick has \$4, how many more cookies can he buy now than he could before?

• 4 • 5

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-1

Problem 1

Problem 2

Problem 3

Disklass 6

Droblom (

Problem 7

Problem 8

Problem 9

Droblom 11

Problem 12

Problem 13

Problem 14

Part I: Problems 16-30 Grawp wrote a word in secret code. In this code, the number 26 stood for the letter "A", the number 25 stood for "B", and so on. In this code, the sequence 9 26 11 11 2 represents which word?

🔕 RAPPY

HAPPY

RATTY

PATTY

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-

Problem 1

Problem 2

Problem

Problem

Problem

Problem

Problem 1

Problem 12

- Problem 13
- Problem 14

Problem 15

Part I: Problems 16-30

Twenty-seven minutes after 11 A.M. is how many minutes before 1 P.M.?

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30

Problem 16

Problem 17

Problem 19

Problem 20

Problem 21

Problem 22

-

Desklass 05

Droblom 26

Problem 27

Problem 28

Problem 29

Problem 30

$20112011201120112011 \div 2011$ is equal to:

🔕 11111

1001001001001001

1001001001001

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 16 Problem 17 Problem 18 Problem 20 Problem 20 Problem 21 Problem 22 Problem 24 Problem 24 Problem 25 Problem 26

(201	$(11-2009) \times (2009-2007) \times (2007-2005) \times \cdots \times 10^{-1}$
(5 –	$(3-3) \times (3-1) =$
	2 ¹⁰⁰⁵
B	2 ²⁰¹¹
0	2 ⁴⁰²⁰
D	2 ¹⁰¹⁰
•	2 ⁵¹⁰

Math Field Day 2011

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 16 Problem 17 Problem 19 Problem 20 Problem 21 Problem 21 Problem 23 Problem 23 Problem 25 Problem 26 Problem 27

Problem 29

Problem 30

How many revolutions must the large gear make before the arrows line up again?

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 16 Problem 17 Problem 18 Problem 19 Problem 20 Problem 21 Problem 24 Problem 24 Problem 26 Problem 27 Problem 27 Problem 28

Problem 30

When you divide (1+4) + (1+8) + (1+12) + (1+16) + (1+20) + (1+24)by 4 the remainder is:

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

ØØØ

02

03

none of these

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 10 Problem 10 Problem 20 Problem 20 Problem 20 Problem 23 Problem 24 Problem 25 Problem 25 Problem 25 Problem 27 Problem 27 Problem 27 Problem 27 Problem 28

Problem 29

Problem 30

Yoda has seven coins worth a total of \$0.49. How many nickels does he have?

(日)

= nac

Problem 30

・ロト・西ト・西ト・西・ うへぐ

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 16 Problem 17 Problem 20 Problem 20 Problem 21 Problem 22 Problem 24 Problem 25 Problem 26 Problem 27 Problem 27

- Problem 29
- Problem 30

Two six-sided dice are rolled, each with two black, two green, and two red faces. What is the probability that both dice show the same color?

- 🔕 1/3
- 1/12
- 1/36

1/9

none of these

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 16 Problem 17 Problem 19 Problem 20 Problem 20 Problem 21 Problem 22 Problem 22 Problem 22 Problem 25 Problem 26 Problem 27 Problem 27

Problem 29

Problem 30

At most how many students can sit in a row of 25 chairs, if seated students must be separated by at least one empty chair?

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Problem 30

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 16 Problem 17 Problem 19 Problem 20 Problem 21 Problem 22 Problem 24 Problem 25 Problem 26 Problem 27 Problem 27 Problem 27 Problem 27

Problem 29

Problem 30

On my scooter, the rear wheel's diameter is 5 centimeters more than the front wheel's diameter. How much bigger is the rear wheel's circumference?

- **10** π centimeters
- **9** 5π centimeters
- **25** π^2 centimeters
- **2**.5 π centimeters
- **15** π centimeters

Math Field Day 2011

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 10 Problem 10 Problem 10 Problem 20 Problem 20

Pictured is a regular hexagon. What is its area?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

Problem 29

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problemss 16-30 Problem 16 Problem 18 Problem 19 Problem 20 Problem 21 Problem 22 Problem 22 Problem 26 Problem 27 Problem 27 Problem 27 Problem 27

Problem 29

Problem 30

In the number 0.1234512345... (recurring) what is the 2011th digit after the decimal point?

CSU Fresno

Part I

Part I: Problems 1-15

Part I: Problems 16-30 Problem 16 Problem 17 Problem 17 Problem 20 Problem 21 Problem 21 Problem 23 Problem 24 Problem 25 Problem 26 Problem 27 Problem 27 Problem 27 Problem 28

Problem 29

Problem 30

If 2/3 of a cup of fish food can feed 12 goldfish, then 4 cups of food should be able to feed how many goldfish?

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

The rules for this part of the exam are the same as the previous part.

- This part of the exam consists of 30 problems.
- The problems will be shown one at a time.
- You will have one and a half minutes to solve the problem shown.
- After one and a half minutes a new problem will be shown.
- You may move to a new question without solving the old one.

Ready... Set... Go!

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1

- Problem 2
- Problem 3
- Problem 5
- Problem 6
- Problem 7
- Problem 8
- Problem 10
- Problem 11
- Problem 12
- Problem 13
- Problem 14

Part II: Problems 16-30

Solutions

If the Weasleys' Wizard Wheezes "OPEN" sign is a square with a perimeter of 12 feet, then the area of the sign is:

・ロット (雪) (日) (日) (日)

- 3 square feet
- 16 square feet
- 9 square feet
- 18 square feet
- 24 square feet

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1

Problem 2

Problem 3

Droblem

Problem

Problem

Problem

Problem 1

Problem 1

Problem 13 Problem 14

Problem 15

Part II: Problems 16-30

Solutions

The average of seven whole numbers is 7. If six of the numbers are 1, then the seventh number is:

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1

Problem 2

Problem 3

Droblom

Problem

Problem

Problem 8

Problem 9 Droblem 1

Problem 11

Problem 1

Problem 13

Problem 14

Part II: Problems 16-30

Solutions

A dealer paid Bunny Fufu 50 cents for each of his decorated eggs. The dealer then sold each egg for \$5. Bunny Fufu got what percentage of the purchase price for his eggs?

10%

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1

Problem 2

Problem 3 Problem 4

Problem

Problem

Problem 3

Problem (

Problem 10

Problem 11

D 11 10

Droblem 1

Droblem 16

Part II: Problems 16-30

Solutions

When fully expanded, 1000999 has how many digits?

・ロット (雪) (日) (日)

- 999
 999
- 9,000
- **3**,004
- 2,998
- 8,997

Math Field Day 2011 How many of the twelve positive factors of 200 are divisible by 4? **a** 4 **B** 7 Problem 5 6 0 8 10

▲ロト▲聞ト▲国ト▲国ト 国 のQで

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1

Problem 2

Problem 3

Problem 4

Problem 6

Problem 7

Problem 8

Problem 10

- Problem 11
- Problem 12
- Problem 13

Droblem 16

Part II: Problems 16-30

Solutions

The Terex Titan dump truck can carry 283,520 kgs of sand. Brak's pickup truck can carry 650 kgs. How many full loads of sand must Brak haul in order to equal one full load of the Terex Titan?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

- less than 300 loads
- between 300 and 400 loads
- between 401 and 500 loads
- between 501 and 600 loads
- more than 600 loads

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣・のへで

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1

- Problem 2
- Problem 3
- Problem 4
- Problem
- Problem I
- Problem 8
- Problem !
- Problem *
- Problem 1
- Problem 1.
- Problem 1
- Problem 1

Part II: Problems 16-30

Solutions

If you have seven flavors of ice cream and three types of cones, how many different single scoop ice cream cones can you make?

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1 Problem 2

Problem 3

Problem 4

Droblom 6

Problem 7

Problem 8 Problem 9

Problem 1

Problem 11

Dashlass 40

Problem 1

Problem 1

Part II: Problems 16-30

Solutions

Data gained weight each week over a six-week period. His gains were recorded as

1.1 lbs 0.75 lb 1.2 lbs 0.5 lb 1.3 lbs 0.25 lb

What was Data's average weekly gain in pounds?

- 0.9 lbs
- 0.85 lbs
- 1.2 lbs
- 0.78 lbs
- 1.05 lbs

Math Field Day 2011

Part II

Part II: Problems 1-

Problem 1

Problem 3

Problem 4

Problem 5

Problem 6

Problem 7

Problem 8

Problem 9 Problem 10

Problem 11

Decklass 4

Problem 1

Problem 1

Part II: Problems 16-30

Solutions

$$1 = 1$$

$$3 + 5 = 8$$

$$7 + 9 + 11 = 27$$

$$13 + 15 + 17 + 19 = 64$$

$$21 + 23 + 25 + 27 + 29 = 125$$

If this number triangle continues indefinitely with the same pattern, what is the sum of the 9th row?

Math Field Day 2011 CSU Fresno Part II Problems 1-15 Problem 3 Proclem 4 Problem 5 Problem 4 Problem 5 Problem 5 Proclem 6

・ロット (雪) (日) (日)

3

Problem 8 Problem 9 B 0

 \bigcirc

D 🕹

Problem 11 Problem 12

Problem 13 Problem 14

Part II: Problems 16-30

Solutions

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

 $\frac{1}{8}$

Problem 1 Problem 2

Problem :

Droblem

Problem

Problem

Problem 9 Droblem 40

Problem 11 Problem 12 Problem 13

Problem 14 Problem 15

Part II: Problems 16-30

Solutions

Banjo the monkey has a fair coin with one side colored blue and the other side colored red. If he flips the coin three times, what is the probability that the outcome is two red and one blue (not necessarily in that order)?

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1

- Problem 2
- Problem 3
- Problem 4
- Droblem 6
- Problem
- Problem 8
- Problem 9
- Problem 10 Problem 11
- Problem 12
- Problem 13 Problem 14

Problem 15

Part II: Problems 16-30

Solutions

Wario made a list of three-digit whole numbers, and every digit used was odd. At most how many different numbers were on his list?

	75
B	625
0	525
D	125
(]	150

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 1 Problem 2

Problem 3

Problem 5

Problem 6

Problem 1

Deebleer 0

Problem 10

Problem 11 Problem 12

Problem 13

Problem 14

Part II: Problems 16-30

Solutions

Last Saturday, Amelie sold her paintings at a local flea market. In the morning she sold one-third of the paintings. She sold one-fourth of the remaining paintings in the afternoon. When the market closed she had 9 paintings left. How many paintings did she bring to to the market with her that morning?

▲日 ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

26

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-1

Problem 2

- Problem
- Problem :
- Problem
- Problem

32

- Problem 9
- Problem 1
- Problem 1 Problem 1
- Problem 1
- Problem 14 Problem 15

Part II: Problems 16-30

Solutions

A domino set contains all number pairs from double-zero to double-six with each number pair occurring only once. For example the pictured domino counts as two-four and four-two. How many dominos are in the set?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30 Problem 16 Problem 17 Problem 19 Problem 20 Problem 21 Problem 22 Problem 23

Problem 2

Problem 26

Problem 27

Problem 20

Decklose 00

Solutions

Sue is twice as old as her sister Kate. If Kate was seven a year ago, how old will Sue be three years from now?

Math Field Day 2011

0001.000

Part II

Part II: Problems 1-15

Part II: Problems 16-30 Problem 16 Problem 17 Problem 18 Problem 20 Problem 21 Problem 21 Problem 21 Problem 22 Problem 24 Problem 25 Problem 25 Problem 27 Problem 28 Problem 29 Problem 30

In Amidala's kitchen are three cookie jars, painted red, blue, and green. The green jar has two more cookies than the blue jar, and the blue jar has two more cookies than the red jar. If there is a combined total of 30 cookies in the three jars, then how many cookies are in the red jar?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30 Problem 16 Problem 17 Problem 19 Problem 20 Problem 22 Problem 23 Problem 24 Problem 26 Problem 26 Problem 27 Problem 27 Problem 28

Problem 30

Solutions

A company is considering the installation of a solar power system in order to save on utility bills. The cost of installing the system is \$15,000 and the monthly savings would be \$100. How many years would it take the company to recoup the cost of installing the system?

- (a) $12\frac{1}{2}$ years
- $10\frac{1}{4}$ years
- $14\frac{3}{4}$ years
- 11³/₄ years
- (12 $\frac{1}{4}$ years

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30 Problem 16 Problem 17

Problem 19

Problem 20

Problem 21

Problem 23

Problem 24

Problem 25

Problem 26

Problem 27

Problem 29

Problem 30

Solutions

7 kilograms plus 27 grams plus 71 milligrams equals how many grams?

< ロ > < 同 > < 回 > < 回 > < □ > <

= nar

103

727.21

7027.71

0 7027.071

7.98

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Problem 30

Solutions

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30 Problem 16 Problem 17 Problem 19 Problem 20 Problem 21 Problem 21 Problem 24 Problem 24 Problem 25 Problem 25 Problem 27 Problem 27 Problem 29 Problem 29 Problem 29 Problem 29 Problem 29 Problem 29 Problem 30 Pictured is a square. The four circular arcs each have their center at a corner of the square. What is the area of the shaded region?

Math Field Day 2011

Part II

Part II: Problems 1-15

Part II: Problems 16-30 Problem 18 Problem 17 Problem 19 Problem 20 Problem 20 Problem 23 Problem 23 Problem 24 Problem 26 Problem 27 Problem 27 Problem 27

Problem 29

Solutions

If this pattern continues, how many white triangles will there be in the next figure?

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problem 16-30 Problem 16

Problem 1

Problem 18

Problem 20

Problem 21

Problem 22

Problem 23

Problem 25

Problem 26

Problem 27

Problem 28

Problem 29

FTODIeIII 30

Solutions

Of the following, which has an odd quotient when divided by 2?

456,456,456,456,456

678,678,678,678,678

432,432,432,432,432

876,876,876,876,876

380,380,380,380,380

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30 Problem 16 Problem 17 Problem 19 Problem 20 Problem 20 Problem 22 Problem 28 Problem 26 Problem 27 Problem 28 Problem 28

Problem 30

Solutions

Pretend your class has fewer than 40 students. When your class gets into groups of 5 there are two students left over. When your class gets into groups of 7, there are four students left over. How many students are in your class?

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problem 16-30 Problem 16

Problem 1

Problem 18 Problem 18

Problem 20

Problem 21

Problem 23

- Problem 24
- Problem 25
- Problem 26
- Problem 27
- Problem 20
- FIODIeIII 29

1 TODICITI CO

Solutions

If my bad hair day began 840 minutes before 8:40 PM, then my bad hair day began at:

ヘロト ヘヨト ヘヨト

э.

7:40 AM

- 7:20 AM
- 8:40 AM
- 6:10 AM
- 6:40 AM

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problem 16 Problem 16 Problem 17 Problem 18 Problem 18 Problem 20 Problem 21 Problem 21 Problem 21 Problem 23 Problem 23 Problem 23 Problem 26 Problem 28 Problem 28 Problem 28 Problem 28 Problem 28 Problem 28 Problem 30 Problem Madeleine has two 600 ml pitchers of orange juice. One pitcher is 1/3 full and the other is 2/5 full. If she adds water to fill each pitcher completely, then pours both pitchers into one large container, what fraction of the mixture in the large container is orange juice?

0 4/15

9/16

◆ロ▶ ◆母▶ ◆ヨ▶ ◆母▶ ● ● ●

◆□▶ ◆□▶ ◆巨▶ ◆巨▶

What is the value of **A** above?

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problem 56 Problem 16 Problem 17 Problem 19 Problem 20 Problem 20 Problem 20 Problem 23 Problem 23 Problem 25 Problem 25 Problem 27 Problem 27 Problem 27

Problem 30

Solutions

Clank imagined two thousand whole numbers whose product is equal to 2000. What is the greatest possible sum of Clank's numbers?

	2011
B	3999

5015

407

9831 🔋

Sal	lutions
30	lutions

eld I 1	
	The correct answer choices are on the next page.
olutions	

▲日▼▲雪▼▲目▼ 目 めんの

Math Field Day 2011

CSU Fresno

Part II

Part II: Problems 1-15

Part II: Problems 16-30

Solutions

Part I

1	е	2	b	3	С	4	b	5	С	6	b
7	а	8	С	9	b	10	d	11	а	12	b
13	а	14	d	15	е	16	d	17	а	18	а
19	С	20	а	21	а	22	С	23	а	24	d
25	b	26	b	27	С	28	b	29	а	30	С
Par	Part II										
1	С	2	С	3	е	4	d	5	С	6	С
7	е	8	а	9	b	10	d	11	b	12	d
13	d	14	е	15	d	16	е	17	С	18	а
19	d	20	е	21	е	22	е	23	b	24	b
25	е	26	С	27	d	28	b	29	d	30	а