Name:

Grade Level:

High School Name:

Problem	1	2	3	4	5	6	Total
Points	10	10	10	10	10	10	60
Score							

Note:

- There are 6 problems.
- Clearly show all the steps in your solution to earn credit.
- You have 2 hours to solve the problems.

Good Luck!!

Problem 1 (10 points)
A rising number, such as 34689, is a positive integer each digit of which is larger than each of the digits to its left. When all five-digit rising numbers are arranged from smallest to largest, find the 100th number in the list.

Problem 2 (10 points)
A circular arc is drawn in a square with center D at one of the vertices of the square and the arc is tangent to the opposite two sides of the square. The arc is also tangent to the hypotenuse of the $30^{\circ}-60^{\circ}-90^{\circ}$ triangle $B F E$ as shown, where $B F=1$. What is the radius of the circle?

Problem 3 (10 points)
A number A has 666 threes as its digits and a number B has 666 sixes as its digits. What are the digits in the product $A \times B$?

Problem 4 (10 points)
Suppose the numbers $a_{1}, a_{2}, \ldots, a_{100}$ satisfy:

$$
\begin{aligned}
& a_{1}-4 a_{2}+3 a_{3} \geq 0 \\
& a_{2}-4 a_{3}+3 a_{4} \geq 0 \\
& \vdots \\
& a_{98}-4 a_{99}+3 a_{100} \geq 0 \\
& a_{99}-4 a_{100}+3 a_{1} \geq 0 \\
& a_{100}-4 a_{1}+3 a_{2} \geq 0
\end{aligned}
$$

Let $a_{1}=1$. Find the values of $a_{2}, a_{3}, \ldots, a_{100}$.

Problem 5 (10 points)
Prove that, if a polynomial

$$
P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{1} x+a_{0}
$$

with integer coefficients has odd values at $x=0$ and $x=1$, then the equation

$$
P(x)=0
$$

has no integer roots.

Problem 6 (10 points)
Is there a triangle, whose heights have lengths $1, \sqrt{5}, 1+\sqrt{5}$?

