First Annual High School Problem Solving Contest Department of Mathematics

Name:

Grade Level:

High School Name:

Problem	1	2	3	4	5	6	Total
Points	10	10	10	10	10	10	60
Score							

Note:

- There are 6 problems.
- Clearly show all the steps in your solution to earn credit.
- You have 2 hours to solve the problems.

Good Luck!!

Problem 1 (10 points)

A rising number, such as 34689, is a positive integer each digit of which is larger than each of the digits to its left. When all five-digit rising numbers are arranged from smallest to largest, find the 100th number in the list.

Problem 2 (10 points)

A circular arc is drawn in a square with center D at one of the vertices of the square and the arc is tangent to the opposite two sides of the square. The arc is also tangent to the hypotenuse of the $30^{\circ} - 60^{\circ} - 90^{\circ}$ triangle BFE as shown, where BF = 1. What is the radius of the circle?

Problem 3 (10 points)

A number A has 666 threes as its digits and a number B has 666 sixes as its digits. What are the digits in the product $A \times B$?

Problem 4 (10 points)

Suppose the numbers $a_1, a_2, \ldots, a_{100}$ satisfy:

$$a_{1} - 4a_{2} + 3a_{3} \ge 0$$

$$a_{2} - 4a_{3} + 3a_{4} \ge 0$$

$$\vdots$$

$$a_{98} - 4a_{99} + 3a_{100} \ge 0$$

$$a_{99} - 4a_{100} + 3a_{1} \ge 0$$

$$a_{100} - 4a_{1} + 3a_{2} \ge 0$$

Let $a_1 = 1$. Find the values of $a_2, a_3, ..., a_{100}$.

Problem 5 (10 points)

Prove that, if a polynomial

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

with integer coefficients has odd values at x = 0 and x = 1, then the equation

P(x) = 0

has no integer roots.

Problem 6 (10 points) Is there a triangle, whose heights have lengths 1, $\sqrt{5}$, $1 + \sqrt{5}$?