Second Annual College Problem Solving Contest Department of Mathematics

Problem 1 (10 points)
Suppose that n is a positive integer and there is a function $f:\{1,2, \ldots, n\} \mapsto \mathbb{R}$ satisfying

$$
f(x+y)=f(x) f(y)+1
$$

for all $1 \leq x, y \leq n$ with $1 \leq x+y \leq n$.
What is the largest possible value of n ?

Solution:

By the premise, for any $1 \leq x \leq n-1$,

$$
f(x+1)=f(1) f(x)+1 .
$$

Let $f(1)=a$. Then $f(2)=a^{2}+1$ and $f(3)=a\left(a^{2}+1\right)+1=a^{3}+a+1$.
Assume that $n \geq 4$. Then, on one hand,

$$
f(4)=f(1) f(3)+1=a\left(a^{3}+a+1\right)+1=a^{4}+a^{2}+a+1
$$

and, on the other hand,

$$
f(4)=f(2)^{2}+1=\left(a^{2}+1\right)^{2}+1=a^{4}+2 a^{2}+2 .
$$

Hence, we obtain the equation

$$
a^{4}+2 a^{2}+2=a^{4}+a^{2}+a+1,
$$

or, equivalently,

$$
a^{2}-a+1=0,
$$

which has no real solutions.
Thus, the largest possible value of n is 3 .

Problem 2 (10 points)
Prove that if the polynomial

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

with integer coefficients assumes the value 7 for four different integer values of x, then it cannot take the value 14 for any integer value of x.

Solution:

Let $P(x)=7$ at $x=a, b, c, d$ distinct integers. Then,

$$
P(x)-7=(x-a)(x-b)(x-c)(x-d) Q(x)
$$

for some polynomial Q with integer coefficients.
Suppose $P(A)=14$ for some integer A. Then,

$$
7=(A-a)(A-b)(A-c)(A-d) Q(A)
$$

but it is impossible to write 7 as the product of five integers with four of them distinct. Hence, $P(x)$ cannot take the value 14 for any integer value of x.

Problem 3 (10 points)
Prove that for every odd natural $n, 1^{n}+2^{n}+\ldots+n^{n}$ is divisible by $1+2+\ldots+n$.

Solution:

Recall that $1+2+\ldots+n=\frac{n(n+1)}{2}$. Since n is odd, $n+1$ is even, thus $\frac{n+1}{2}$ is an integer. Further, n and $\frac{n+1}{2}$ are relatively prime. It is therefore sufficient to prove that $1^{n}+2^{n}+\ldots+n^{n}$ is divisible by both n and $\frac{n+1}{2}$. We have

$$
\begin{aligned}
1^{n}+2^{n}+\ldots+n^{n} & \equiv 1^{n}+2^{n}+\ldots+\left(\frac{n-1}{2}\right)^{n}+\left(\frac{n+1}{2}\right)^{n}+\ldots+(n-1)^{n}+n^{n} \\
& \equiv 1^{n}+2^{n}+\ldots+\left(\frac{n-1}{2}\right)^{n}+\left(-\frac{n-1}{2}\right)^{n}+\ldots+(-1)^{n}+0^{n} \\
& \equiv 1^{n}+2^{n}+\ldots+\left(\frac{n-1}{2}\right)^{n}-\left(\frac{n-1}{2}\right)^{n}+\ldots-1^{n} \\
& \equiv 0(\bmod n)
\end{aligned}
$$

and

$$
\begin{aligned}
1^{n}+2^{n}+\ldots+n^{n} & \equiv 1^{n}+2^{n}+\ldots+\left(\frac{n-1}{2}\right)^{n}+\left(\frac{n+1}{2}\right)^{n}+\left(\frac{n+3}{2}\right)^{n} \\
& +\ldots+(n-1)^{n}+n^{n} \\
& \equiv 1^{n}+2^{n}+\ldots+\left(\frac{n-1}{2}\right)^{n}+\left(\frac{n+1}{2}\right)^{n}+\left(-\frac{n-1}{2}\right)^{n} \\
& +\ldots+(-2)^{n}+(-1)^{n} \\
& \equiv 1^{n}+2^{n}+\ldots+\left(\frac{n-1}{2}\right)^{n}+\left(\frac{n+1}{2}\right)^{n}-\left(\frac{n-1}{2}\right)^{n}+\ldots-2^{n}-1^{n} \\
& \equiv\left(\frac{n+1}{2}\right)^{n}(\bmod n+1)
\end{aligned}
$$

so

$$
1^{n}+2^{n}+\ldots+n^{n} \equiv 0\left(\bmod \frac{n+1}{2}\right)
$$

Problem 4 (10 points)
Suppose that, for a function $f:[0, \infty) \rightarrow \mathbb{R}$,

$$
\lim _{x \rightarrow \infty}\left[f(x)+\frac{1}{|f(x)|}\right]=0
$$

Show that the limit

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists and evaluate it.

Solution:

From the premise, we infer that

$$
\begin{equation*}
f(x)<0, \text { for all } x \geq M, \tag{1}
\end{equation*}
$$

with some $M>0$.
Otherwise, there is a sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ of real numbers such that

$$
x_{n} \rightarrow \infty, n \rightarrow \infty \text { and } f\left(x_{n}\right)>0, n=1,2, \ldots,
$$

and hence,

$$
f\left(x_{n}\right)+\frac{1}{f\left(x_{n}\right)} \geq 2, n=1,2, \ldots
$$

which is a contradiction.
Observe that the latter is easily derived from the fact that

$$
\left(a-\frac{1}{a}\right)^{2} \geq 0, a>0
$$

For each $x \geq M$, we have:

$$
\begin{aligned}
& \begin{array}{l}
\begin{array}{l}
\left|f(x)+\frac{1}{|f(x)|}\right|=\left|f(x)-\frac{1}{f(x)}\right|=\left|\frac{f^{2}(x)-1}{f(x)}\right|=\left|\frac{(f(x)-1)(f(x)+1)}{f(x)}\right| \\
=\left[1-\frac{1}{f(x)}\right]|f(x)+1| \\
\geq|f(x)+1| \geq 0,
\end{array} \quad \text { since, by }(1), 1-\frac{1}{f(x)} \geq 1,
\end{array} \\
& \hline
\end{aligned}
$$

whence, by the Squeeze Theorem, we infer that

$$
\lim _{x \rightarrow \infty}|f(x)+1|=0
$$

i.e.,

$$
\lim _{x \rightarrow \infty} f(x)=-1
$$

Problem 5 (10 points)
2016 digits are written in a circular order. Prove that if the 2016-digit number obtained when we read these digits in clockwise direction beginning with one of the digits is divisible by 27 , then if we read these digits in the same direction beginning with any other digit the new 2016-digit number that is formed is also divisible by 27 .

Solution:

Suppose we start our number with some digit (say a) and read off the 2016-digit number obtained when we read these digits in clockwise direction. Let b be the 2015-digit number formed by the remaining digits in order. Then, the 2016-digit number formed is:

$$
M=10^{2015} \cdot a+b
$$

We will show that if M is divisible by 27 , then the 2016-digit number formed by starting with the next digit (after a, going clockwise) and ending in a is also divisible by 27. This will suffice to show that the claim in the problem is true. Note that this next number (ending in a) is:

$$
N=10 b+a
$$

Now, $10 M-N=\left(10^{2016}-1\right) a$, and $10^{2016}-1=\underbrace{999 \ldots 9}_{2016 \text { nines }}=9 \times \underbrace{111 \ldots 1}_{2016 \text { ones }}$. But the digits of $\underbrace{111 \ldots 1}_{2016 \text { ones }}$ add up to 2016 and hence, this number is divisible by 3. So, $10 M-N$ is divisible by 27 . Since M is divisible by 27 , we conclude that N is also divisible by 27 , and we are done!

Problem 6 (10 points)
Prove that $\sin 1<\log _{3} \sqrt{7}$.

Solution:

We have $\sin 1<\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}<\frac{7}{8}$. It remains to show that $\frac{7}{8}<\log _{3} \sqrt{7}$.
The latter inequality is equivalent to $7<\log _{3} 7^{4}$, which is true since $3^{7}<7^{4}$.

