Second Annual College Problem Solving Contest

Department of Mathematics

Name:

Problem	1	2	3	4	5	6	Total
Points	10	10	10	10	10	10	60
Score							

Note:

- There are 6 problems.
- Clearly show all the steps in your solution to earn credit.
- You have 2 hours to solve the problems.

Good Luck!!

Problem 1 (10 points)
Suppose that n is a positive integer and there is a function $f:\{1,2, \ldots, n\} \mapsto \mathbb{R}$ satisfying

$$
f(x+y)=f(x) f(y)+1
$$

for all $1 \leq x, y \leq n$ with $1 \leq x+y \leq n$.
What is the largest possible value of n ?

Problem 2 (10 points)
Prove that if the polynomial

$$
P(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots+a_{n-1} x+a_{n}
$$

with integer coefficients assumes the value 7 for four different integer values of x, then it cannot take the value 14 for any integer value of x.

Problem 3 (10 points)
Prove that for every odd natural $n, 1^{n}+2^{n}+\ldots+n^{n}$ is divisible by $1+2+\ldots+n$.

Problem 4 (10 points)
Suppose that, for a function $f:[0, \infty) \rightarrow \mathbb{R}$,

$$
\lim _{x \rightarrow \infty}\left[f(x)+\frac{1}{|f(x)|}\right]=0
$$

Show that the limit

$$
\lim _{x \rightarrow \infty} f(x)
$$

exists and evaluate it.

Problem 5 (10 points)
2016 digits are written in a circular order. Prove that if the 2016-digit number obtained when we read these digits in clockwise direction beginning with one of the digits is divisible by 27 , then if we read these digits in the same direction beginning with any other digit the new 2016-digit number that is formed is also divisible by 27 .

Problem 6 (10 points)
Prove that $\sin 1<\log _{3} \sqrt{7}$.

