
California State University, Fresno

Lyles College of Engineering

Electrical and Computer Engineering Department

TECHNICAL REPORT

Experiment Title: ____​Facial Recognition and Position Tracking Embedded System​_____

Course Title: ______________​ECE 186B: Senior Design II​__________________

Date Submitted: ___________________​May 12, 2020​___________________________

Advisor: ___________________​Dr. Nan Wang​_________________________

Prepared by: Sections Written:

_______Jason Luc_______ _______Jason Luc_______

_____Brian Cardwell_____ _____Brian Cardwell_____

INSTRUCTOR SECTION

Comments:​ ___

Final Grade:​ Jason Luc: ____________________

 Brian Cardwell: ____________________

Table of Contents

1. Problem Statement and Objective 3
1.1 Problem Statement 3
1.2 Objective 3

2. Background 4

3. Technical Plan 5
3.1 Hardware 5

Figure 1: Jetson Nano 5
Figure 2: Jetson Nano Connections 6

3.2 Software 6
Figure 3: HOG Gradients 7
Figure 4: HOG Detector 7
Figure 5: Face Landmarks 8

4. Block Diagrams 10
Figure 6: Facial Recognition System 10
Figure 7: Face Position Detection System 10

5. Results 11
Figure 8: Known Face encodings 11
Figure 9: Real-time face encoding 11
Figure 10: Determine if a face has a match 12
Figure 11: Face Recognition Results 13
Figure 12: Determine chin and nose orientation 14
Figure 13: Position Tracking Results 15
Figure 14: GPIO pin functions 16

6. Parts and Budget 16

7. Project Standards 16

8. Schedule 17

9. References 18

11. Appendix 19
Appendix A: face_recognition_tracking.py 19
Appendix B: take_picture.py 24

1. ​Problem Statement and Objective

1.1 Problem Statement
Distracted driving accounts for approximately 9 percent of fatal car crashes in the United States
[1] and drowsy drivers account for an additional 2.5 percent [2]. On average, this accounts for
4,000 lives lost each year in the U.S. alone. Our project will attempt to drastically reduce this
number by alerting distracted drivers to help them maintain focus. In addition, this project will
help prevent vehicle theft. In 2008, there were about 750,000 reported incidents of vehicle theft
in the United States alone[9]. Our project seeks to reduce these two vehicular crimes by
implementing features that will track and discourage distracted driving, and one that won’t allow
the vehicle to start without scanning the face of a person who is registered to the car. This project
will incorporate the use of machine learning and inputs from various hardware to accomplish our
goal.

1.2 Objective
The project objectives are to build an embedded system that will recognize a registered face and
track the position of the face in real time. The Face Recognition process will include the
following functionalities:

1. Detect if a face is present.
2. Determine unique features of the face.
3. Compare features between a live capture and a stored copy to determine if they match.

Position tracking will be determined using the following process:

1. Detect if a face is present.
2. Determine unique features of the face.
3. Based on the nose and chin position, determine if the face is drooping downward.

This system could then be used as an add-on to a vehicle's operating system. It would prevent
the vehicle from operating if a known user isn’t identified. Additionally, it would alert a driver
who is looking down while the vehicle is in motion.

2. ​Background
Machine learning is the science of developing computers to learn and behave as if they were
humans. A more detailed explanation is that computers are given a decision algorithm and then
fed large amounts of data. As the computer classifies the data using the algorithm the computer’s
decisions are checked and corrected to strengthen the decision algorithm. This process continues
until the computer’s decision accuracy is at a level that is deemed suitable by the user. This
means that through machine learning computers are able to learn and improve by providing them
with information. The information fed to computers are most commonly in the form of
observations and real-world interactions. This is a simple explanation of how machine learning
works, but there are more things that happen behind the scenes of machine learning.

There are a variety of different machine learning algorithms which are grouped by their learning
style or by their form/function. A few examples of each are: supervised learning, unsupervised
learning, regression, decision tree, clustering, and deep learning. However, all machine learning
algorithms share three components: representation, evaluation, and optimization. Representation
is a set of classifiers that the computer is able to understand. Some concepts of representation
include K-nearest neighbor, logistic regression, decision trees, neural networks, and Bayesian
networks.

Evaluation is an objective or scoring function that allows the computer to assign values or
weights to each option. A few concepts that computers use to evaluate which decision gets what
weight value are precision and recoil, squared error, posterior probability, K-L divergence, and
cost and utility. The final component, optimization, is the search method that computers use to
make decisions based on the values of the weights assigned by the evaluation component.

Face Recognition is a Machine Learning technique that combines several different Machine
Learning algorithms to perform a single task. The general order of operations for recognizing a
particular face is:

1. Locate a face or multiple faces in an image.
2. Find the unique features of the face (eyes, nose, mouth , etc.).
3. Compare these features to known images.
4. Decide whether the features are similar enough to be a match.

3. ​Technical Plan

3.1 Hardware
The embedded system will be implemented on the NVIDIA Jetson Nano, which is designed for
Artificial Intelligence and Machine Learning embedded applications. The Jetson Nano, shown in
Figure 1​, hosts a quad-core ARM processor, 128-core Maxwell GPU, and 4GB of RAM.

Figure 1: Jetson Nano

The Nano contains the following communication ports and protocols (see ​Figure 2​):

1. USB 3.0 Type A (4x)
2. Micro USB
3. HDMI
4. Camera Ribbon Connector
5. Ethernet
6. GPIO headers
7. I2C
8. SPI
9. UART

Additional hardware will include a relay, switch, and speaker. They will connect to the GPIO
expansion header. The relay will be energized when the face recognition program finds a
positive match. The switch is used to represent the state of the vehicle as either moving forward
or not moving forward. The speaker will sound if the system is in a moving forward state and
the users head is drooping down.

Figure 2: Jetson Nano Connections

3.2 Software
There are several Machine Learning models already developed that can perform Face
Recognition with very high accuracy. The goal of the project is to implement these models for
specific tasks; not to improve them or develop new models. A high level Python API called
face_recognition ​will be used when creating the software for the project [5]. The API is built on
an open-source Machine Learning library called ​dlib​. The Face Recognition model developed by
dlib has an accuracy of 99.38 percent according to the benchmark called Labeled Faces in the
Wild (LFW) [6]. The dlib model is designed using a deep convolution neural network (D-CNN)
based on a ResNet-34 network developed by Microsoft [7].

The first step in the process is locating faces within an image. To accomplish this, a technique
called Histogram of Oriented Gradients (HOG) is used [8]. A HOG classifier looks at each pixel
in an image and compares it to all neighboring pixels. Then it creates a gradient in the direction
which pixels are becoming darker, see ​Figure 3​. The magnitude of the gradient is proportional
to the intensity of the change in darkness. A face can then be identified by comparing it to the
gradient of a pre-trained model of millions of faces, see ​Figure 4​.

 ​Figure 3: HOG Gradients

 ​Figure 4: HOG Detector

The next step is determining unique features of the face. This is accomplished using a regression
tree algorithm to detect 68 specific face landmarks[9,10], as shown in ​Figure 5​.

Figure 5: Face Landmarks

Landmarks are necessary because it acts as reference points so that a face can be turned in any
direction and still be recognized. Once landmarks are identified the face is given a 128
dimension byte vector using a D-CNN based on FaceNet [11]. The API uses a pre-trained model
called OpenFace to generate the 128 dimension vector [12].

Finally, the vector data is compared to data of a known face using an SVM classifier pre-trained
by dlib. The result of the classifier will either be a match or an unknown face. If there is a
match then a relay could be energized to allow a vehicle to start. Without a match the car would
not start thus preventing it from being stolen. If a match is not found after a predetermined time
then a known user can enter a pin code to use the vehicle.

Face Position Tracking will use the landmarks assigned from the HOG classifier to track a face
based on where they appear in the video frame. Since the goal is to track a drivers face, a camera
would be placed directly in front of the driver. Moving the head side-to-side is often necessary
when driving to check your surroundings and the major distractions that cause accidents are
texting or falling asleep. In both cases, a drivers head will droop downward so that is what will
be tracked. When the head droops an alarm will sound notifying the driver. Additionally if a
user's face is not located when tracking is active an alarm will sound. This is a case where a
driver may be reaching for something and their head is not facing the road.

The overall system will execute in the following sequence:

1. Face Recognition executes on startup.
a. If a match is found then the Face Tracking stage is entered.
b. If a match is not found the user is prompted to enter a pin code. If the pin code is

correct then Face Tracking begins, otherwise the program is terminated.
2. Face Tracking initially begins in the OFF state because a car is not in gear when started.
3. When the car is placed in gear and moving forward (simulated by a push button) then

Face Tracking will be running.

This project also utilizes OpenCV software which is an Open Source Computer Vision Library.
OpenCV is used to interface with the webcam as well as display the webcam feed allowing the
user to visualize the results. The library has many built in functions which are very simple to
implement. Additionally, the Jetson Nano GPIO library is used to communicate with the push
button and speaker. There are built in functions set pins as input or output and to trigger a
threaded callback function if an event is recognized; similar to an interrupt. This library is
specific to the Jetson Nano board and would likely be omitted in a vehicle’s version.

There is an additional program included to allow the user to take a picture with the webcam and
upload it as a known face. This is done to test multiple users in the program. In a vehicle this
would need to be implemented with additional security measures if the vehicle’s camera were to
be used. Another option would be to allow a registered user to upload an image using a
smartphone or computer; assuming the vehicle has an App interface.

4. ​Block Diagrams

Face Recognition diagram:

Figure 6: Facial Recognition System

Face Position Detection diagram:

Figure 7: Face Position Detection System

5. ​Results

A simple Python script for taking a picture using the webcam is implemented using OpenCV
library. The user is prompted to enter a name for the image and the picture is taken when the ‘S’
key is pressed on a keyboard. In a vehicle, this same process could be implemented using the
console's touch screen.

The Face Recognition script reads a saved image and encodes it into a 128 dimension byte
vector. The encodings are stored in a list which is used to compare with faces in the real-time
video feed. ​Figure 8​ shows the encoding of each team member.

Figure 8: Known Face encodings

The video feed is first resized to ¼ the size which leads to faster processing and then converted
to RGB format. Next, the location of the face is detected and assigned values for the top, right,
left, and bottom. The location data is stored in a structured numpy array format for later
processing. When a face location is found, it is then encoded the same way as the saved images
are. This process is shown in ​Figure 9​.

Figure 9: Real-time face encoding

If encoded faces are present in the webcam feed they are compared to each known face from the
saved images. A list of true or false for each face comparison is returned and used to match with

the name of the person when displaying results. ​Figure 10​ shows how this is accomplished.
The compare_faces function returns the true/false result of each encoding. The face_distance
function returns a euclidean distance for each encoding to indicate how similar face encodings
are. A numpy function np.argmin is used to return indices of minimum value of the face
distances.

Figure 10: Determine if a face has a match

Figure 11​ shows the results are accurate even if the user is wearing a hat or sunglasses. If a
match is not found after a few seconds, then a function call is made to ask the user for a pin code.
If the pin is entered correctly the program continues to face tracking, otherwise it is terminated.

Figure 11: Face Recognition Results

Face Position Tracking is done using the same Face Recognition API library. However, there is no need
to determine who the person is at this stage, therefore the encoding and comparing steps are omitted. In
this case, the face location is determined in the same way as before and the face landmarks are stored in a
list. The landmarks are represented as X and Y coordinates based on the face location data. Next, the
minimum and maximum Y coordinate values for the nose and chin are determined using built in Python
functions. The difference between the max and min is calculated and compared to a threshold value. The
process is shown in ​Figure 12​. The Y coordinate is using a lamba function to access the second index in
a list of lists. Chin and nose bridge are lists of coordinates within the face landmarks list.

Figure 12: Determine chin and nose orientation

The threshold was determined through experiment. The webcam was placed slightly beyond arm's
length; which in a vehicle is roughly how far the driver is from the dash. The calculations of the Y
coordinate values were monitored while moving the head in all directions. The threshold values are only
exceeding when the head is facing down, as shown in ​Figure 13​.

Figure 13: Position Tracking Results

This process is placed in an if/else decision statement and only executed if the drive state is true.
The drive state is set based on a push button connected to the GPIO pins. ​Figure 14​ shows the
GPIO pin functionality. After configuring the pins an event detect is implemented for the push
button. The callback function driving_state simply inverts a boolean driving state variable. The

event detects callback function is executed in a separate thread which allows the tracking to
continue in parallel.

Figure 14: GPIO pin functions

See Appendix A for complete code.

6. ​Parts and Budget

Required Parts Cost

Jetson Nano Free

Webcam $20

Monitor $55

SD Card $10

HDMI Cable Free

*Note: Items labeled as ‘free’ were owned by a member prior to the project.

7. ​Project Standards
Artificial Intelligence and Machine Learning are relatively new fields and Industry Standards are an
ongoing process. Currently there are no official IEEE standards for these disciplines. However, the IEEE
P7000 series is a group of projects under development with the goal of standardizing Autonomous and
Intelligent Systems[3].

Additionally, on February 11, 2019 the President of the United States issued Executive Order 13859 for
Maintaining American Leadership in Artificial Intelligence[4]. The Executive Order directs the National
Institute of Standards and Technology (NIST) to develop technical standards, safe testing, and
deployment of AI technologies. On August 9, 2019, NIST released “A Plan for Federal Engagement in

Developing Technical Standards and Related Tools” in response to the Executive Order. It calls for the
government to “speed the pace of reliable, robust, and trustworthy AI technology development.”

Based on government organizations currently implementing standards and consumer demand of AI
technologies the field is going to continue its rapid growth. It is such a powerful technology that the need
for strict standards are extremely important to developing and maintaining safe and reliable AI systems.

8. ​Schedule

9. ​References
[1] National Highway Traffic Safety Administration. (April 2019) ​Distracted Driving Fatal Crashes, 2017​ [Online].
Available: ​https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812700​.

[2] National Highway Traffic Safety Administration. (Oct 2017) ​Drowsy Driving, 2015 ​ [Online]. Available:
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812446​.

[3] IEEE Standards Association. ​The IEEE Global Initiative on Ethics of Autonomous and Intelligent Systems
[Online]. Available: ​https://standards.ieee.org/industry-connections/ec/autonomous-systems.html​.

[4] National Institute of Standards and Technology (NIST). (May 2019) ​Artificial Intelligence Standards ​[Online].
Available: ​https://www.federalregister.gov/documents/2019/05/01/2019-08818/artificial-intelligence-standards​.

[5] Github face_recognition. (2017). [Online]. Available: ​https://github.com/ageitgey/face_recognition

[6] Labeled Faces in the Wild. University of Massachusetts. (Oct. 2019).[Online]. Available:
http://vis-www.cs.umass.edu/lfw/results.html

[7] Deep Residual Learning for Image Recognition. (2016). [Online]. Available:
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_
paper.pdf

[8] Histograms of Oriented Gradients for Human Detection. (2005). [Online]. Available:
http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

[9] Face Point Annotations. [Online]. Available:
https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/

[10] One Millisecond Face Alignment with an Ensemble of Regression Trees. (2014). [Online]. Available:
http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf

[11] FaceNet: A Unified Embedding for Face Recognition and Clustering. (2015). [Online]. Available:
https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_089.pdf

[12] OpenFace. (2016). [Online]. Available:
https://cmusatyalab.github.io/openface/models-and-accuracies/

[13] “Summed-Area Table.” ​Wikipedia​, Wikimedia Foundation, 21 Sept. 2019, Available:
en.wikipedia.org/wiki/Summed-area_table.

[14] “Kanade–Lucas–Tomasi Feature Tracker.” ​Wikipedia​, Wikimedia Foundation, 5 Aug. 2019, Available:
en.wikipedia.org/wiki/Kanade%E2%80%93Lucas%E2%80%93Tomasi_feature_tracker.

https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812700
https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/812446
https://standards.ieee.org/industry-connections/ec/autonomous-systems.html
https://www.federalregister.gov/documents/2019/05/01/2019-08818/artificial-intelligence-standards
https://github.com/ageitgey/face_recognition
http://vis-www.cs.umass.edu/lfw/results.html
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf
http://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
https://ibug.doc.ic.ac.uk/resources/facial-point-annotations/
http://www.csc.kth.se/~vahidk/papers/KazemiCVPR14.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2015/app/1A_089.pdf
https://cmusatyalab.github.io/openface/models-and-accuracies/
https://en.wikipedia.org/wiki/Summed-area_table
https://en.wikipedia.org/wiki/Kanade%E2%80%93Lucas%E2%80%93Tomasi_feature_tracker

[15] “Facts Statistics: Auto theft,” III. [Online]. Available:
https://www.iii.org/fact-statistic/facts-statistics-auto-theft.​ [Accessed: 16-Dec-2019].

11. ​Appendix

Appendix A: face_recognition_tracking.py
import face_recognition

import cv2

import numpy as np

import time

import Jetson.GPIO as GPIO

drive = False

def recognition():

 video_capture = cv2.VideoCapture(0)

 brian_image = face_recognition.load_image_file("bc.jpg")

 brian_face_encoding = face_recognition.face_encodings(brian_image)[0]

 jason_image = face_recognition.load_image_file("jason.jpg")

 jason_face_encoding = face_recognition.face_encodings(jason_image)[0]

 known_face_encodings = [

 brian_face_encoding,

 jason_face_encoding

]

 known_face_names = [

 "Brian",

 "Jason"

]

 face_locations = []

 face_encodings = []

 face_names = []

 match_found = False

 start_time = time.process_time()

 while (time.process_time() - start_time) < 5.0:

 ret, frame = video_capture.read()

 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

https://www.iii.org/fact-statistic/facts-statistics-auto-theft.

 rgb_small_frame = small_frame[:, :, ::-1]

 face_locations = face_recognition.face_locations(rgb_small_frame,

model="cnn")

 face_encodings = face_recognition.face_encodings(rgb_small_frame,

face_locations,model="large")

 face_names = []

 for face_encoding in face_encodings:

 matches = face_recognition.compare_faces(known_face_encodings,

face_encoding,tolerance=0.6)

 name = "Unknown"

 face_distances =

face_recognition.face_distance(known_face_encodings, face_encoding)

 best_match_index = np.argmin(face_distances)

 if matches[best_match_index]:

 name = known_face_names[best_match_index]

 match_found = True

 face_names.append(name)

 # display results

 for (top, right, bottom, left), name in zip(face_locations,

face_names):

 top *= 4

 right *= 4

 bottom *= 4

 left *= 4

 cv2.rectangle(frame, (left, top), (right, bottom), (0, 0,

255), 2)

 cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (0,

0, 255), cv2.FILLED)

 font = cv2.FONT_HERSHEY_DUPLEX

 cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0,

(255, 255, 255), 1)

 sframe = cv2.resize(frame,(640,480))

 cv2.imshow('Face Recognition running...', sframe)

 cv2.moveWindow('Face Recognition running...',0,0)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 if not match_found:

 print("match not found.")

 else:

 print("match found.")

 video_capture.release()

 cv2.destroyAllWindows()

 return match_found

def wait_to_drive():

 global drive

 but_pin = 18 # Board pin 18

 alert_pin = 16 # Board pin 16

 # Pin Setup:

 GPIO.setwarnings(False)

 GPIO.setmode(GPIO.BOARD) # BOARD pin-numbering scheme

 GPIO.setup(but_pin, GPIO.IN) # button pin set as input

 GPIO.setup(alert_pin, GPIO.OUT)

 GPIO.add_event_detect(but_pin, GPIO.RISING, callback=driving_state,

bouncetime=200)

def driving_state(channel):

 global drive

 drive = not drive

def tracking():

 global drive

 video_capture = cv2.VideoCapture(0)

 RED = (0, 0, 255)

 GREEN = (0, 255, 0)

 BLUE = (255, 0, 0)

 alert_pin = 16 # Board pin 16

 face_locations = []

 status = ''

 labelColor = BLUE

 cnt = 0

 while True:

 ret, frame = video_capture.read()

 small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)

 rgb_small_frame = small_frame[:, :, ::-1]

 face_locations = face_recognition.face_locations(rgb_small_frame)

 face_landmarks_list =

face_recognition.face_landmarks(rgb_small_frame, face_locations)

 if drive:

 if not face_landmarks_list:

 GPIO.output(alert_pin, GPIO.HIGH)

 status = "alert!!!"

 cv2.rectangle(frame, (100,60),(1,1),RED,-1)

 cv2.putText(frame, status, (5,30),

cv2.FONT_HERSHEY_DUPLEX, 1.0, (255, 255, 255), 1)

 for face_landmarks in face_landmarks_list:

 chin = face_landmarks['chin']

 maxLandmark = max(chin, key = lambda i:i[1])[1]

 minLandmark = min(chin, key = lambda i:i[1])[1]

 chin_diff = (maxLandmark - minLandmark)/10

 nose_bridge = face_landmarks['nose_bridge']

 maxLandmark = max(nose_bridge, key = lambda i:i[1])[1]

 minLandmark = min(nose_bridge, key = lambda i:i[1])[1]

 nb_diff = (maxLandmark - minLandmark)/10

 if chin_diff> 4.9 and nb_diff > 1.7:

 cnt = cnt + 1

 if cnt > 8:

 status = "alert!!!"

 labelColor = RED

 GPIO.output(alert_pin, GPIO.HIGH)

 else:

 cnt = 0

 status = "driving"

 labelColor = BLUE

 GPIO.output(alert_pin, GPIO.LOW)

 else:

 status = "NOT driving"

 GPIO.output(alert_pin, GPIO.LOW)

 for (top, right, bottom, left) in face_locations:

 top *= 4

 right *= 4

 bottom *= 4

 left *= 4

 cv2.rectangle(frame, (left, top), (right, bottom), labelColor,

2)

 cv2.rectangle(frame, (left, bottom - 35), (right, bottom),

labelColor, cv2.FILLED)

 cv2.putText(frame, status, (left + 6, bottom - 6),

cv2.FONT_HERSHEY_DUPLEX, 1.0, (255, 255, 255), 1)

 sframe = cv2.resize(frame,(640,480))

 cv2.imshow('Face Tracking running...', sframe)

 cv2.moveWindow('Face Tracking running...',0,0)

 if cv2.waitKey(1) & 0xFF == ord('q'):

 break

 video_capture.release()

 cv2.destroyAllWindows()

 print("stop")

def pin_code():

 pin = 1234

 codeEntered = input("Enter pin code: ")

 if codeEntered == str(pin):

 print("Success")

 return True

 else:

 print("Incorrect pin")

 return False

def main():

 match = recognition()

 if not match:

 for i in range(5):

 match = pin_code()

 if match:

 break

 if match:

 wait_to_drive()

 tracking()

 GPIO.cleanup()

 print("System turned off")

if __name__ == '__main__':

 main()

Appendix B: take_picture.py
import cv2

fname = input("Enter file name: ")

fname = fname + '.jpg'

webcam = cv2.VideoCapture(0)

while True:

 try:

 ret, frame = webcam.read()

 sframe = cv2.resize(frame,(640,480))

 cv2.imshow('Picture', sframe)

 cv2.moveWindow('Picture',0,0)

 if cv2.waitKey(1) & 0xFF == ord('s'):

 cv2.imwrite(filename=fname, img=frame)

 webcam.release()

 cv2.destroyAllWindows()

 break

 elif cv2.waitKey(1) & 0xFF == ord('q'):

 webcam.release()

 cv2.destroyAllWindows()

 break

 except(KeyboardInterrupt):

 webcam.release()

 cv2.destroyAllWindows()

 break

