Semivarigrams and Kriging

Dr. Zhi Wang Department of Earth and Environmental Sciences California State University, Fresno

Descriptive

- Similar to autocorrelations, but here we focus on the difference between pairs of observations separated by a lag h.
- Although measurements taken very close to each other tend to be similar, variations are generally highly irregular.

Relevant questions

- Should samples be taken randomly or at uniform, irregular intervals?
- How close together should samples be taken?
- Do variations differ with direction of sampling?
- Scale variant or invariant?
- How many samples are needed for a reliable semivarigram?

Semivariance

Semivariance:

$$\gamma(h) = \frac{1}{2N(h)} \sum_{i=1}^{N(h)} \left[A_i(x_i) - A_i(x_i + h) \right]^2$$

N(h) is the total number of pairs of observations separated by h.

Semivarigrams

- Nugget variance: a non-zero value for γ when h = 0.
 Produced by various sources of unexplained error, or spatial variations occurring over smaller distances than the smallest sampling interval.
 Cill feature than the feature of the production of the production
- Sill: for large values of h the variogram levels out, indicating that there no longer is any correlation between data points. The sill should be equal to the variance of the data set.

 Range: is the value of h where the sill occurs (or 95% of the value of the sill). Mirror image of correlation length.

Sample size

- In general, 30 or more points are needed to generate a reasonable sample variogram.
- The most important part of a variogram is its shape near the origin as closest points are given more weight in the interpolation process.

Variogram	Model	Equation	Consideration
models	Bounded or Transitional		
	Pure nugget	$\gamma(h) = \begin{cases} 0 \\ C \end{cases}$	h = 0
		/\"\ (C	h > 0
	Linear	$\gamma(h) = \begin{cases} Ch/a \\ C \end{cases}$	$0 \le h \le a$
	Limetri	/(") - (C	h > a
	Spherical		
		$\left[C \left[\frac{3h}{h} - \frac{1}{h} \left(\frac{h}{h} \right)^3 \right] \right]$	$0 \le h \le a$
		$\gamma(h) = \begin{bmatrix} 2a & 2 \langle a \rangle \end{bmatrix}$	
		$\gamma(h) = \begin{cases} C \left[\frac{3h}{2a} - \frac{1}{2} \left(\frac{h}{a} \right)^3 \right] \\ C \end{cases}$	h > a
	Exponential	$\gamma(h) = C[1 - \exp(-h/a)]$	$h \ge 0$
	Gaussian	$\gamma(h) = C\{1 - \exp[-(h/a)^2]\}$	$h \ge 0$
		Unbounded or Nontransitional	
	Linear	$\gamma(h) = mh$	$h \ge 0$
	Power	$\gamma(h) = mh^{\beta}$	$h \ge 0; 1 < \beta < 2$

Directional dependence

• There may be higher spatial autocorrelation in one direction than in others, which is called anisotropy:

 Anisotropy is incorporated in the variogram model by means of a linear transformation.

knowledge of the data)

Inference

- Kriging produces the best linear unbiased estimate of an attribute at an unmeasured site, knowing only the variogram.
- Ordinary kriging: Most robust and most used
- Lognormal kriging: Ordinary kriging of the logarithms of the measured values (strongly positively skewed data that approximate a lognormal distribution)
- Universal kriging accounts for drift (local trend in variogrms).
- Punctual kriging: produces values for non-sampled points.
- Block kriging: gives values for inferred areas instead of inferred points. Estimates for blocks have lower variance because of the averaging of the small scale fluctuations of the function [Z(x)] over the area of the block.
- Co-kriging: uses 2 or more variables that are correlated between themselves in the estimation of values for one of them (e.g: soil bulk density and soil water content).

Computer exercise

- Use GEOSTAT software to produce semivarigrams of soil attributes (data provided in the Excel data-file).
- Determine a best fit model of the semivarigram.
- Get data and redraw the semivarigrams in Excel, print results.